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What happens when we ignore uncertainty?









Alternatives...

Table 7
Stevens et al. 2006, table 2: Determinants
of authoritarian aggression

Coefficient
Variable (Standard Error)
Constamt 41 (.93)
Countries
Argentina 1.31 (.33)BM
Chile .93 (.32)"0M
Colombia 1.46 (.32)**BM
Mexico 07 (a2)ACHCOV
Venezuela 96 (.37)BM
Threat
Retrospective egocentric .20 (.13)
economic perceptions
Prospective egocentric 22 (12
economic perceplions
Ratrospective sociotropic =21 (12"
economic perceptions
Prospective sociotropic =32 (12)°
economic perceptions
Ideclogical distance from =27 (.07
president
Ideology
Ideology .23 (.07)"*
Individual Differences
Age .00 (.01)
Female -.03 (.21)
Education A3(.14)
Academic Sector 16 (.29)
Business Sector .31 (.25)
Government Sector -.10(.27)
R? A5
Adjusted /? 2
N 500

“p < .01, *p < .05, *p < .10 (wolailed)

ACoefficient ig significantly different from Argentina's at
p= .05;

ECoeflicient is significantly different from Brazil's at p < .05,
CHicoefficient is significantly different from Chile's at p < 05;
“OCoefficient is significantly different from Colombia's at

p < .05
MCoefficient is significantly different from Mexico's at p < .05;

YCoefficient is signiticantly different from Venezuela's at
p < .05.
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[Jonathan P Kastellec and Eduardo L Leoni. 2007. Using Graphs Instead
of Tables in Political Science. Perspectives on politics 5, 4: 755-771]
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How easy is it to ignore the uncertainty?

Coefficient

Variable (Standard Error) Argentina- ' ———
Constant 41 {.93} Chile— : P
Countries .

Argentina R b el e Colombia- : — e

Chile .93 (.32)""BM :

Colombia 1.46 (.32)**BM Mexico- —_——

Mexico A7 32)ACH.COV '

Venezuela 96 |.37)+8M Venezuela A B

This contributes to



Dichotomania...



Predictions from 2016 presidential election

FiveThirtyEight NYT Upshot HuffPo Pollster

28% 15% 2%


https://www.bloomberg.com/graphics/2015-whats-warming-the-world/

Predictions from 2016 presidential election

FiveThirtyEight NYT Upshot HuffPo Pollster


https://www.bloomberg.com/graphics/2015-whats-warming-the-world/

People are very good at ignoring uncertainty...



People are very good at ignoring uncertainty...

Especially when we provide bad
uncertainty representations



Ilcon arrays in medical risk communication

[Figure from Fagerlin, Wang, Ubel. Reducing the influence of anecdotal reasoning on people’s health care decisions:
Is a picture worth a thousand statistics? Medical Decision Making 2005; 25:398-405]

Success Rate of Balloon Angioplasty Success Rate of Bypass Surgery

Successiully cured
v of angina

Sueccessfully cured
v of angina

Mol suceessfully cured
of angina

Not successfully
cured of angina

Frequency framing or discrete outcome visualization



What is an icon array for a
continuous distribution?



What is an icon array for a
continuous distribution?

An example scenario...









Do I have time to get a coffee?
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Qu antile dotplots Error in estimated probability:
logit(estimated p) - logit(true p)

[Kay, Kola, Hullman, Munson. When (ish) is My

Bus? User-centered Visualizations of Uncertainty in

Everyday, Mobile Predictive Systems. CHI 2016]

estimatedp = - - - P:
= true p .

Dotplot-20

Better estimates Dotplot-100
(perceptually) ..

%

Stripeplot

Log odds ratio -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 10 15 2.0 25

0.08 0.12 0.18 0.27 0.38 0.50 0.62 0.73 0.82 0.88 0.92

Estimated p if
true p was 0.5
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Quantile dotplots

[Fernandes, Munson, Hullman, Kay. Uncertainty
Displays Using Quantile Dotplots or CDFs Improve
Transit Decision-Making. CHI 2018]
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Quantile dotplots

[Fernandes, Munson, Hullman, Kay. Uncertainty
Displays Using Quantile Dotplots or CDFs Improve
Transit Decision-Making. CHI 2018]
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(Sidebar —
Uncertainty: what am I talking about?)



For the purposes of this talk...

| am largely adopting a view of uncertainty

Put another way:
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For the purposes of this talk...

| am largely adopting a view of uncertainty

Put another way:



(End sidebar —
Back to uncertainty vis)



Discrete outcome / frequency framing
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Predictions from 2016 presidential election

FiveThirtyEight NYT Upshot HuffPo Pollster

28% 15% 2%


https://www.bloomberg.com/graphics/2015-whats-warming-the-world/
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FiveThirtyEight's new House forecast


https://projects.fivethirtyeight.com/2018-midterm-election-forecast/house/

FiveThirtyEight's new House forecast

T~


https://projects.fivethirtyeight.com/2018-midterm-election-forecast/house/

FiveThirtyEight's new House forecast

/


https://projects.fivethirtyeight.com/2018-midterm-election-forecast/house/

Other discrete outcome
uncertainty visualizations...



Hurricane error cones



Hurricane error cones



(but problems with ensembles...)



(but problems with ensembles...)



Deterministic construal errors



Deterministic construal errors



Deterministic construal errors

44°F —
—41°F

38" F—



Fit line uncertainty



Fit line uncertainty



Fit line uncertainty

Hypothetical outcome plots
(HOPs)






HOPs might aid deterministic construal errors



HOPs might aid deterministic construal errors






Hurricane location at a time slice...

[Liu, Boone, Ruginski, Padilla, Hegarty, Creem-Regehr, ... House. Uncertainty Visualization by Representative
Sampling from Prediction Ensembles. IEEE Transactions on Visualization and Computer Graphics, PP(99), 2016]




Hurricane location at a time slice...

[Liu, Boone, Ruginski, Padilla, Hegarty, Creem-Regehr, ... House. Uncertainty Visualization by Representative
Sampling from Prediction Ensembles. IEEE Transactions on Visualization and Computer Graphics, PP(99), 2016]







Animated uncertainty is
showing up in the media...



Jobs report (NYT)


https://nyti.ms/RyZB8a

Turn out this actually works!

Kay



Measles vaccination

[Harris, Popovich, Powell, Watch how the measles outbreak spreads when kids get vaccinated - and
when they don't, The Guardian, 2015, https:/www.theguardian.com/society/ng-interactive/2015/
feb/05/-sp-watch-how-measles-outbreak-spreads-when-kids-get-vaccinated]



https://www.theguardian.com/society/ng-interactive/2015/feb/05/-sp-watch-how-measles-outbreak-spreads-when-kids-get-vaccinated
https://www.theguardian.com/society/ng-interactive/2015/feb/05/-sp-watch-how-measles-outbreak-spreads-when-kids-get-vaccinated

Animation helps people experience uncertainty

This can be very powerful..



Income of black boys from wealthy families


https://nyti.ms/2GGpFZw

Cartographic uncertainty



Just map to another visual channel, right?



Just map to another visual channel, right?

[Lucchesi & Wikle. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph
rotation. Stat, 292-302, 2017]

Margin of error (%)
0

2.55

0.1



Just map to another visual channel, right?

[Lucchesi & Wikle. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph
rotation. Stat, 292-302, 2017]

Margin of error (%)
0

2.55

0.1

Very abstract...



Glyph-based uncertainty

Color saturation
Blur

Blur

More uncertainty —



Glyph-based uncertainty

[MacEachren, Robinson, Hopper, Gardner, Murray, Gahegan, Hetzler. Visualizing geospatial information uncertainty:
What we know and what we need to know. Cartography and Geographic Information Science, 32(3), 139-160, 2005]

Color saturation

More intuitive?

Blur
But how accurate?

Blur

More uncertainty —



I'm not a GIS person, so let’s take a little detour
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..and back to map-land



Uncertainty -> (samples from dist)



Uncertainty -> (samples from dist)

[ ]
||



Uncertainty -> ~dither (samples from dist)

[Lucchesi & Wikle. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph
rotation. Stat, 292-302, 2017]

Discrete outcomes

Maybe more intuitive,

maybe less?

Possible deterministic

construal errors



Addressing bias in perception of probability...



Value-suppressing uncertainty palettes



Linear-in-log-odds perception of proportions

Tversky & Kahneman (1992)



Linear-in-log-odds perception of proportions

Tversky & Kahneman (1992)



Linear-in-log-odds perception of proportions



Going back to election data...



New York Times Election Needle

[https://www.nytimes.com/interactive/2016/11/08/us/elections/trump-clinton-election-night-live.ntml]



https://www.nytimes.com/interactive/2016/11/08/us/elections/trump-clinton-election-night-live.html










But shouldn't anxiety
be proportional to
uncertainty?



Uncertainty visualization as a moral imperative

We should...

present well-calibrated uncertainty
that cannot be ignored
in ways people can actually understand



Thanks!

And thanks to: Jessica Hullman, Sean Munson, Julie Kientz, Shwetak Patel,
Abhraneel Sarma, Xiaoying Pu, Tara Kola, Michael Fernandes, Logan Walls,
Yea-Seul Kim, Samana Shrestha, Gregory Nelson, Eric Hekler, Dan Morris,

mc schraefel, Michael Correll, Jeff Heer, Steve Haroz, Pierre Dragicevic

http://mjskay.github.io/tidybayes/
http://github.com/mjskay/uncertainty-examples

Matthew Kay
University of Michigan School of Information
mjskay@umich.edu
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