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ABSTRACT 
Visualizations depicting probabilities and uncertainty are used 
everywhere from medical risk communication to machine 
learning, yet these probabilistic visualizations are difficult to 
specify, prone to error, and their designs are cumbersome to 
explore. We propose a Probabilistic Grammar of Graphics 
(PGoG), an extension to Wilkinson’s original framework. In-
spired by the success of probabilistic programming languages, 
PGoG makes probability expressions, such as P(A|B), a first-
class citizen in the language. PGoG abstractions also reflect 
the distinction between probability and frequency framing, a 
concept from the uncertainty communication literature. It is 
expressive, encompassing product plots, density plots, icon 
arrays, and dotplots, among other visualizations. Its coher-
ent syntax ensures correctness (that the proportions of visual 
elements and their spatial placement reflect the underlying 
probability distribution) and reduces edit distance between 
probabilistic visualization specifications, potentially support-
ing more design exploration. We provide a proof-of-concept 
implementation of PGoG in R. 

Author Keywords 
Grammar of Graphics; Uncertainty visualization 

CCS Concepts 
•Human-centered computing → Visualization theory, con-
cepts and paradigms; Visualization systems and tools; 

INTRODUCTION 
Creating effective visualizations of probability distributions 
is a critical task: there is a growing consensus that we need 
to show uncertainty in scientific and everyday data, often ex-
pressed as probabilities [59, 29, 48]. Visualizations can help 
communicate uncertainty in ways that draw users’ attention 
to it and help them understand it. For example, during the 
2016 US presidential election, the New York Times created a 
forecast “needle” visualization (Figure 1.5), using animated 
jitter to encode the uncertainty in a real-time prediction for the 
electoral college margin [51], an example of a hypothetical 
outcome plot [25]. Other examples of principled uncertainty 
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visualizations have been found to help people comprehend 
data and make better decisions in domains such as medical 
risk communication [22], hurricane forecasting [34], and tran-
sit prediction [28, 13]. All of these examples belong a broader 
class of visualizations we call probabilistic visualizations: vi-
sualizations of (possibly conditional) probability distributions. 

Effective probabilistic visualizations can be hard to specify: 
the New York Times election needle is a bespoke JavaScript 
application, the kind of visualization only a small number of 
premier data journalism outlets are producing. The implemen-
tation of the needle involves the careful handling of probability 
distributions, sampling, and animation, and these aspects are 
intertwined in the implementation. Existing declarative for-
malisms for specifying visualizations, such as the Grammar 
of Graphics [35, 58] do not fully incorporate notions of proba-
bility distributions and conditional probabilities, forcing the 
user to carefully handle probability distributions to ensure 
the correctness of the output. As a result, visualizations for 
probabilities are currently difficult to create, their design space 
costly to explore, and their specification process error-prone. 

To address these shortcomings, we propose a Probabilistic 
Grammar of Graphics (PGoG), a high-level grammar for spec-
ifying probabilistic visualizations. Extending the original 
Grammar of Graphics [58], PGoG makes probability distribu-
tions first-class citizens in its specifications and defines other 
grammar components around them. PGoG improves the spec-
ification of probabilistic visualizations in two ways: 1) by 
reinforcing parsing rules on probability data and aesthetics 
mappings, PGoG guarantees that the visualization reflects the 
probability distribution the user intends to communicate; 2) 
by covering a wide range of common statistical graphics with 
a consistent set of language elements (Figure 3), PGoG aims 
to enable rapid prototyping and reasoning with minimal edit 
distances among designs. 

The design of PGoG is motivated by calls for “systematic 
ways of displaying uncertainty” [56] and “a closer integration 
of visualization and statistical algorithms” [24]. We devel-
oped and evaluated PGoG based on principles from cognitive 
ergonomics [6] — the usability of notational systems. To 
that end, we follow a similar approach to probabilistic pro-
gramming, a paradigm where syntax is close to statistical 
notation while shielding users away from implementation de-
tails. Given the success of probabilistic programming for 
helping users with diverse backgrounds (from biologists to so-
cial scientists) specify complex statistical models, we expect to 
empower similar users to specify probabilistic visualizations. 

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 339 Page 1

mailto:mjskay@umich.edu
http://dx.doi.org/10.1145/3313831.3376466
mailto:permissions@acm.org
mailto:xpu@umich.edu


Additional channels (25/100)

ɤ

Special layouts → hierarchical (8/100)

ɢ�

Special layouts (33/100)

Generated with 
Carmody, 2010 [8]

cf. Romei et al., 2018 [45] cf. Byco!e & Dottle, 2018 [7]

ɣ

cf. Badger et al., 2018 [4]

Binder et al., 2015 [5]

Can reasonably specify (34/100)

Density (count/m^2)

City A City B

cf. Abrams, 2019 [2]

Candidate +0.4

cf. Almukhtar et al., 2018 [3]

ɥ

Correll et al., 
2018 [10] Liu et al., 2019 [34]

cf. Popovich, 2019 [42]

Race 1 Race 2 Others

Gen W

Gen X

Gen Y

Gen Z

ɠ

2001 202120112006 2016
0%

100%

Fair

Good

Very Good

Premium

Ideal

0 2000 4000 6000 8000
price

cu
t

cf. Geiger, 2016 [16]

Rushworth, 2019 [46] cf. Kommenda 
et al. 2018 [32]

Wattenberg et al., 
2016 [53]

Fernandes et al., 2018 [13] PAIR-code/facet, 2019 [1]

ɡ

Figure 1. A sample of our probabilistic visualization collection. On the left: a subset of visualizations PGoG can reasonably specify. On the right: 
categories of visualizations that informed the grammar design but are not yet fully reproduced by PGoG; see the Expressiveness section of the evaluation 
for more details and a discussion of how PGoG could be extended to support them. 1 quantile dotplot for uncertain bus arrival times [28]; 2 barchart 
for America’s shifting demographics [16]; 3 icon array that flows, showing social mobility [4]; 4 icon array for medical risk communication [5]; 5 
NYT election needle [3]; 6 ensemble of hurricane path predictions [34]. The full collection (N = 100) is in the supplemental materials. 

ggplot(mtcars) + 
geom_density(
   aes(x = mpg,
       y = stat(density), 
    fill = cyl),
position = "stack") 

a) P(mpg) in ggplot 
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b) Naive ggplot

10 15 20 25 30 35

c) ggplot: corrected
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ggplot(mtcars) + 
geom_bloc(
  aes(x = mpg, 
 height = P(cyl|mpg) P(mpg),
   fill = cyl))

d) PGoG
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ggplot(mtcars)+
geom_density(
   aes(x = mpg,
     y = stat(density*n),
    fill = cyl)), 
position = "stack") 

✘ ✔ ✔

ggplot(mtcars) + 
geom_density(
 aes(x = mpg,
     y = stat(density)
))

P(cyl|mpg)

P(mpg)

height = P(cyl|mpg) P(mpg),

Figure 2. A motivating example for the Probabilistic Grammar of Graphics. a) For reference, a density plot for variable mpg alone: P(mpg). b) In 
base ggplot2: naively introducing the variable cyl creates partition of the density plot disproportional to the true cyl counts. c) In base ggplot2: 
normalizing the colored regions by hacking internal variables (density * n) creates a correct stacked density plot. d) PGoG generates the correct 
density plot using syntax closer to users’ statistical language, in terms of probability expressions. 

We provide a proof-of-concept implementation of PGoG in 
the programming language R, based on the visualization li-
brary ggplot2. Since PGoG is an abstract formalism, we 
believe that it can be integrated with other declarative visual-
ization frameworks, such as Vega-Lite [47]. PGoG can also 
serve as a theoretical framework for future work to formalize 
other visualizations of uncertainty and to ground uncertainty 
visualization research questions. 

A MOTIVATING EXAMPLE: SPECIFYING DENSITY PLOTS 
Figure 2 shows how current specifications can visualize prob-
ability distributions in an incorrect or convoluted manner. The 
specification code is in ggplot2, a popular visualization pack-
age in R [21] and the dataset is the Motor Trend Cars Road 
Tests data in R [43]. At first sight, Figure 2.b looks like a 

depiction of the distribution of car mileages (P(mpg)), pro-
portionally colored by cylinder count cyl1. Accordingly, the 
ggplot2 code contains fill = cyl, the common way of ex-
pressing “break down by this variable using fill color”. Little 
does the inexperienced user know that Figure 2.b is erroneous, 
because the system does not understand the laws of probability. 
Instead of showing the proportion of 8-cylinder cars within the 
dataset as one would assume, the portion of 8-cylinder cars (in 
light green) will always be 1/3 no matter the data. We show 
how ggplot2 commits this error in Figure 4. Essentially, the 
system pieces together three separate densities P(mpg|cyl) 
without normalizing by cyl group counts P(cyl), resulting in 

1cyl = number of cylinders in a car engine. mpg = miles per gallon, 
a measure of mileage. am = automatic or manual transmission. 
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Figure 3. A subset of visualizations described by the PGoG grammar. For geom_bloc, we assume that variable A is continuous, and B, C are discrete. (If 
A is also discrete, geom_bloc will produce area plots [56].) h <- ... is height <- [the probabilistic variable in the first column]. f = fill aesthetic. 

P(mpg|cyl)  ΣcylP(mpg|cyl) = ??

Stack y coordinates

Figure 4. How ggplot2 constructs Figure 2.b. Left: the system first 
computes three density estimates, each of unit area, that represent 
P(mpg|cyl) (cyl = 4, 6 and 8). Right: ggplot2 stacks the densities naively 
(position = stack), creating an incorrect figure: the viewer might in-
terpret there to be roughly 1/3 8-cylinder cars, while in the data, this 
proportion is 43%. In terms of probability notations, stacking creates a 
part-whole relationship and thus implies summation, but ∑cyl P(mpg|cyl) 
does not simplify to P(mpg). 

incorrect proportions of cyl when the user views the visual-
ization as a whole. In this example, the system’s approach to 
visualizing a bivariate distribution departs from what the user 
might expect, or what is correct statistically. 

For the purposes of this paper, a probabilistic visualization 
is correct if the proportions of visual elements (such as 
counts or areas) and their spatial placement reflect the un-
derlying probability distribution, including any conditional 
probabilities or part-to-whole relationships. Thus, Figure 2.b 
is incorrect. 

Even when the existing languages produce correct probabilis-
tic visualizations, the necessary specifications can be con-
voluted. In Figure 2.c and 2.d, we compare how ggplot2 
and our specification, PGoG, describe the same distribution 
P(mpg,cyl). In Figure 2.c, the normalization term, P(mpg), 

is implied with the line stat(density*n), which is a hack 
to access the internal cylinder count n. As Figure 2.c further 
shows, specifying color (fill) is an indirect way of creat-
ing a conditional density P(cyl|mpg). This ggplot2 example 
illustrates how complex it is to specify even simple probabil-
ity distributions in existing languages. In comparison, PGoG 
understands how to map probability expressions directly to 
visual elements. This allows users who understand probability 
distributions but are unfamiliar with implementation details to 
specify precisely the probabilities they wish to depict, analo-
gous to how probabilistic programming lanugages allow users 
to directly specify statistical models. 

RELATED WORK 

Probabilistic Programming 
The probabilistic aspect of PGoG is partly inspired by proba-
bilistic programming languages. These languages use explicit 
notations to represent probability distributions, with the ca-
pacity to condition on (observed) values of variables [19]. 
For instance, in the Stan language, an independent Bernoulli 
model can be specified using syntax very close to statistical 
notations (Figure 1 in Carpenter et al. [9]): 
model { 
theta ~ beta(1, 1); //prior 
y ~ bernoulli(theta); //likelihood 

} 

Stan, and probabilistic programming languages in general, 
hide implementation details of samplers (including scalabil-
ity improvements), enabling not only statisticians but also a 
broader user group to specify custom models [18, 49, 41, 9]. 
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As evidence for the value of probabilistic programming for 
Bayesian inference alone, JAGS [41] and Stan [9] are widely 
cited (3000+ and 1600+, respectively), with applications in 
a range of disciplines. PGoG similarly defines visualizations 
with probability notations (hence the “probabilistic” in name), 
hiding the complexity of lower-level specification and oppor-
tunities for errors. PGoG thus enables users with knowledge 
of probability distribution notation to more easily create prob-
abilistic visualizations. 

Probabilistic visualizations 
Probabilistic visualizations have various designs and are used 
to communicate uncertainty information in many domains, see 
Figure 1. The probabilities they express can be a probability 
mass function (pmf) for discrete variables or a probability 
density function (pdf) for continuous variables. PGoG covers 
a subset of probabilistic visualizations. 

Probability & frequency formats in uncertainty visualization 
We use a distinction in uncertainty communication [17] — 
probability v.s. frequency formats — to ground the types of 
probabilistic visualizations covered by PGoG. A probability 
format is a continuous representation, represented verbally 
with percentages (x%) or visually with area plots [56], where 
the area of a visual element is proportional to its probabil-
ity. Examples of area plots include variants of pie charts, bar 
charts, and density plots. A frequency format is a discrete 
representation, represented verbally with fractions or ratios 
(x-in-100) or visually with icon-based (or unit [39]) visualiza-
tions, which include variants of icon arrays and dotplots. 

A designer may want to choose between probability and fre-
quency formats. Frequency format visualizations are often 
found to help comprehension and decision-making; such is 
the case with quantile dotplots in a public transit setting in 
Figure 1.1 [28, 13], and icon arrays in medical risk commu-
nication [36, 22, 38]. Figure 1.4 shows an icon array, with 
patients grouped by disease condition and test results. On the 
other hand, probability format visualizations, such as density 
plots, are widely used in scientific communication, and can be 
more compact to display than icon-based counterparts. 

PGoG supports both probability and frequency formats. This 
feature may help users to quickly explore visualizations of the 
same probability distribution in either format. 

Grammar of Graphics 
The power of high-level visualization grammars comes 
from their coverage of common chart types with a relatively 
small vocabulary. One notable example of high-level 
grammars is Wilkinson’s Grammar of Graphics [58]. In 
this formalization, a plot is a combination of components, 
including data — “data operations that create variables from 
datasets” and elements — “graphs [geometries] and their 
aesthetic attributes [aesthetics or encodings]”. As an example, 
a scatterplot of variable B against A can be specified as: 

encoding(x position ← A, y position ← B) +
geometry(point)A

B

Some widely-used instantiations of the Grammar of Graphics 
include Vega-lite [47] and Polaris (later Tableau) [50]. 

PGoG

P(A|B,...), ...
height ← P(A|B,...), ...

geom_bloc

geom_icon

Grammar ggplot2

x ← A, ...

geom_bar

geom_density

geom_points

geom_rect

geom_...

Aesthetics

...

A, ...

Figure 5. PGoG in the context of the layered grammar of graphics [54]. 
The leftmost “Grammar” column is adapted from Figure 4 of Wick-
ham’s paper [54]. The middle column lists some representative instanti-
ations of layered grammar of graphics components in ggplot2. PGoG 
extends the instances of data, aesthetics, and geometry components from 
the layered grammar of graphics, shown in the rightmost column. 

Most relevant to our work, Wickham’s layered Grammar 
of Graphics groups the original components into layers to 
better embed the grammar into an implementation, namely 
the ggplot2 package in R [54]. We reproduce and extend 
Wickham’s illustration of the layered Grammar of Graphics 
and ggplot2 components in Figure 5. 

One benefit of Grammar of Graphics is that its components 
leverage structures inherent to visualization to create a 
modular grammar, instead of using named graphics like 
“bar chart” [54]. As a result, it is easy to change from 
one visualization design to another. The previous scatter 
plot specification can be easily changed to a bar chart: 

encoding(x position ← A, y position ← B) +
geometry(bar)A

B

PGoG conceptually extends the data component in the 
grammar of graphics, and defines additional aesthetics and 
geometries to specify probabilistic visualizations. 

Convoluted specifications for probabilistic visualizations 
While the Grammar of Graphics works well generally, it lacks 
abstractions for probabilistic visualizations. As a result, speci-
fying probabilistic visualizations can be ad hoc. For example, 
the ggplot2 package has a proliferation of geometry types 
for density plot variants alone, such as ones for plain density 
plots (geom_density) , violin plots , and ridge plots 

[21, 57]. Arguably, this ad hoc approach diverges from 
the flexibility and elegance of the Grammar of Graphics; an 
approach that directly incorporates probability distributions 
might be more modular and flexible. 

Current languages also have hidden dependencies that could 
be inferred from the probabilistic structure of the data, such as 
the need for manual normalization in the ggplot2 example 
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of stacked densities in Figure 2. Similar dependencies exist 
in another Grammar of Graphics instantiation, Vega-lite [47], 
where the user must override the default of three different 
parameters, extent, steps, and counts2 to create a stacked 
density. Since parameters set otherwise will not produce a 
correct stacked density plot, errors are likely; a grammar that 
understands the underlying probability distributions might 
prevent such errors. 

Specifications for probabilities and visual elements can also 
be difficult to separate and change. Consider ATOM, a layout-
based grammar with a broad coverage for unit visualizations 
(icon-based probabilistic visualizations) [39]. The ATOM 
grammar is extremely powerful and creates visualizations by 
combining low-level layout operations. However, the power of 
ATOM may come at a cost: its layout operations imply what 
probability distribution the system computes and visualizes 
without making it explicit; the probability distribution itself 
may be hard to interpret from the specification, and it may 
be hard to ensure that the distribution is preserved if the user 
changes the layout of the visualization during design explo-
ration. A grammar that directly encodes the desired probability 
distribution might aid exploration of valid visualizations by 
inferring layouts from the structure of probability expressions, 
rather than the other way around. 

GRAMMAR DESIGN CONSIDERATIONS AND PROCESS 
We derive three design considerations for the PGoG grammar 
based on the Motivating Example and Related Work: 

1. Guaranteeing correctness: a grammar for probabilistic 
visualizations should ensure correctness as we define in the 
Motivating Example. Specifically, the grammar needs to 
ensure that 1) the probability distributions supplied in the 
specification are valid, and 2) the visualization accurately 
reflects the supplied distributions, including any part-to-
whole relationships. 

2. Untangling specification: given that current systems can 
make specifying probabilistic visualizations convoluted, a 
grammar should untangle the specification for probabilistic 
visualizations. Our approach is to center the PGoG grammar 
around probability expressions, such as P(A|B). 

3. Facilitating exploration: following other grammars that 
facilitate exploration, PGoG should be coherent and sys-
tematic [11], its components reusable [23]. According to 
one visualization model, GraphScape, the process of ex-
ploring the visualization design space can be thought of as 
making edits to visualization specifications [30]. From that 
perspective, easier exploration could be enabled by having 
shorter edit distances in the space of supported probabilistic 
visualizations, a property PGoG aims to have. 

We defined the PGoG grammar through an iterative process. 
For several months, we collected and reviewed 100 probabilis-
tic visualizations from academic papers and reputable news 
outlets, in addition to basic statistical graphics such as density 
plots and bar charts. The collection is in the Supplemental 
Materials. We did not intend to reproduce every visualization 
in the collection. Rather, we used these real-life examples to 

2https://vega.github.io/vega-lite/docs/density.html 

prototype PGoG components — asking, e.g., can this aesthet-
ic/geometry describe how this visualization encodes probabil-
ity? We then systematically iterated through combinations 
of the components to refine the grammar rules. Criteria for 
in-/excluding a particular combinations are mainly based on 
correctness instead of perceptual or aesthetic properties: does 
it produce a probabilistic visualization (as opposed to a non-
probabilistic plot)?, and does the resulting visualization show 
the intended distribution? 

GRAMMAR SPECIFICATION 
The PGoG grammar is an extension of the data, aesthetics, and 
geometry components in the layered Grammar of Graphics, 
see Figure 5. Most notably, probability distributions are made 
to be first-class citizens as data variables. We also define new 
aesthetics and geometries to work with probabilities. Not all 
combinations of data and aesthetics are allowed; we enforce a 
set of grammar rules to cover existing probabilistic visualiza-
tions while ensuring that the generated visualizations can be 
represented in the 2D plane. 

Data variables 
We assume that the dataset is in the tidy format [55], i.e., each 
row represents an observation or a sample from a distribution, 
and each column is an attribute. Existing high-level visualiza-
tion libraries such as ggplot2 and Vega-Lite treat columns 
as data variables, which we call simple variables in PGoG. 
Simple variables can be discrete or continuous, which later 
determines the plot type, such as density plot v.s. bar charts. 
In addition, PGoG has probabilistic variables, defined in the 
form P(A|B, ...), where A,B, ... are simple variables. Each 
probabilistic variable is 1D, with one marginal variable (left 
of the pipe) and any number of conditionals (right of the pipe). 
One or more probabilistic variables are used with aesthetics to 
construct data mappings. 

A visualization described by PGoG can represent any proba-
bility function P(A, ...|...) for discrete variables. In a PGoG 
specification, this probability function is computed as the prod-
uct of all probabilistic variables P(A|...) provided. For exam-
ple, the probability function P(A,B) can be specified with 
P(A|B)P(B) or P(B|A)P(A). Since there are multiple ways to 
factor a probability function, PGoG requires the user to supply 
each factor directly, not just the joint like P(A,B), to eliminate 
ambiguity in data mapping. We currently have the 1D restric-
tion because the probabilistic variables can then correspond 
to the 1D aesthetics (discussed next). Unlike the case with 
other grammars [56], 2D probabilistic variables/aesthetics (e.g. 
P(A,B|...)) are not yet included; we have not yet developed 
comprehensive rules to ensure the correctness of specifications 
with such expressions but plan this for future work. 

Validating the probabilistic variables 
PGoG checks to ensure that the probability factors multiply 
to a single, valid probability function. The logic for checking 
follows standard probability rules, outlined in Algorithm 1, 
which essentially verifies the correctness of the factors using 
the chain rule for probabilities. PGoG builds and parses a 
data structure (the “chain”) shown in Figure 6. Malformed 
factorizations, such as P(A|B)P(A), will not pass this check. 
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    P(A, B, C) 
= P(A)        
× P(B|A)     
× P(C|A,B) 

...①

...②

...③

geom_bloc:
 height ← P(A)
          P(B|A)
  width ← P(C|A,B)
      x ← A
  color ← B
   fill ← C

Probability PGoG syntax

Aa1 a2

b1
B

b2

C
c1
c2

①
 P

(A
=

a1
)

②
 P

(B
=

b1
 | 

A=
a1

)

③ P(C=c2 | A=a1, 
                    B=b1)

An area plot for P(A, B, C)

A

B

C

∅

A

A,B

Validation

(chain)

Figure 6. How PGoG turns probabilities into an area plot. PGoG parses 
aesthetics mappings (middle) with probabilities into a validation data 
structure (“chain”). The marginal and conditional variables combined 
from the first level should be the conditional variables of the second level. 
The PGoG implementation uses this chain data structure to check for 
malformed probabilities and keep track of visualization layouts. 

PGoG orders the factors by the number of conditionals in each 
factor; each valid specification has only one ordering. The user 
can thus supply the factors in any order. The probability chain 
structure is used for checking the factors and later, deriving 
the visualization layout. 

Algorithm 1 Checks if all probability factors are well-formed 
1: chain ← order by conditionals length(chain) 
2: legit ← T RUE 
3: for row ∈ chain do 
4: if next row exists AND legit then 
5: if next$cond , row$marg ∪ row$cond then 
6: legit ← FALSE 
7: if row$marg∩ row$cond , 0/ then 
8: legit ← FALSE 
9: assert(legit) 

Aesthetics 
Aesthetics, in the Grammar of Graphics model, are plot el-
ements that data variables are mapped onto [58]. In PGoG, 
we add new probabilistic aesthetics to accommodate proba-
bilistic variables: width and height. These 1D aesthetics are 
inspired by Product Plots [56], where the width and height of 
a rectangle each express a factor of a probability function, and 
thus the area of the rectangle is the joint probability. During 
our design process, we find that the concept of width and 
height as aesthetics also applies to other probabilistic visu-
alization types. width and height can be recursive, in that 
we can subdivide one or both dimensions to create partitions 
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     x <- A
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Does not exist

 ~ A
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PGoG

Figure 7. Combinations of aesthetics x, width, and height create differ-
ent area plots in PGoG. The x<-A mapping creates equidistant partitions 
on the x-axis. Product plot specifications are on the right, which requires 
the user to learn its visual primitives such as hbar (horizontal bar). Fig-
ure 3 shows more density plot and dotplot examples in PGoG. 

according to marginalization P(A) = ∑b∈B P(A,B). This recur-
sive property of the probabilistic aesthetics makes use of the 
probability chain structure, as seen in Figure 6: nested condi-
tional probabilities correspond to nested partitions of the area 
plot. Note how P(A), P(B|A), and P(C|A,B) directly create 
values that can be read from the chart using the aesthetics they 
are mapped onto; e.g., P(B|A) is mapped to height, and the re-
cursive layout guarantees that P(B = b1|A = a1) (or other com-
binations of B ∈ {b1,b2} and A ∈ {a1,a2}) can be read from 
the chart using height. This even suggests a method to recreate 
the original TreeMap algorithm [27] using PGoG: alternately 
mapping conditional probabilities onto height, then width, then 
height (e.g. width <- P(A), height <- P(B|A), width 
<- P(C|B,A), height <- P(D|C,B,A), etc). Such a speci-
fication reveals the conditional probability structure underly-
ing TreeMaps. 

Coordinate aesthetics include the common x and y, the two 
axes in the Cartesian plane. In traditional visualization spec-
ification, we often map two simple variables onto x and y, a 
combination that can create a scatter plot. In PGoG, using 
coordinate aesthetics implies conditioning on simple variables. 
Mapping a simple variable A onto the x-axis, for example, 
means to condition on A; for discrete variables this creates 
equal-width partitions along the x-axis, see Figure 7. Unlike 
traditional specifications where we can only assign one vari-
able to one axis, it is possible to do so with multiple simple 
variables in PGoG. The coordinate aesthetics could also be 
easily extended to include polar coordinates in the future; the 
concept of width and height can still apply. 

It is worth noting that probabilistic and coordinate aesthetics 
are different. With probabilistic aesthetics, the variation in 
the visual element (width and height) carries probabilistic 
information. In comparison, coordinate aesthetics lay out 
simple variables on the canvas; they create a uniform partition 
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on an axis for a discrete variable (equivalent to faceting [58]), 
or a real-valued axis for a continuous variable. 

Visual aesthetics currently include color, fill, and alpha. 
Each visual aesthetic changes the appearance of visual ele-
ments based on the given simple or probabilistic variable. For 
example in Figure 2, the number of cylinders is mapped onto 
fill color. We can also map a probabilistic variable onto a visual 
aesthetic, provided that this probabilistic variable is the base 
case (the bottom one) in the probability chain. This restric-
tion exists because unlike width or height, visual aesthetics 
are not recursive and cannot be partitioned: there is no color 
palette that conveys marginalization, i.e., ∑n P(A,Bn) = P(A). 

We describe the format of PGoG aesthetics mapping as an 
EBNF grammar, listed below. However, there are additional 
checks to ensure that the mapping from data variables to aes-
thetics is valid. As an example, if the final probability function 
is a conditional probability such as P(A|B,C), the conditionals 
B and C are expected to be mapped onto either coordinate or 
visual aesthetics. These checks are meant for fully specifying 
each data and visual element and eliminating ambiguity. 

# ========== data ========== 
simple_var = discrete_var|continuous_var; 
# example variable names in dataset 
discrete_var = "A".."Z"; 
continuous_var = "x"; # at most one 
prob_var = marg cond; 
marg = coord_var | visual_var; 
cond = {coord_var} {visual_var}; 
coord_var = simple_var; 
visual_var = discrete_var; 
# ========== aesthetics ========== 
coord_aes = "x" | "y"; 
visual_aes = "fill" | "color" | "alpha"; 
prob_aes = "height" | "width"; 
# ========== mappings ========== 
coord_mappings = {coord_aes coord_var}; 
visual_mappings = {visual_aes visual_var}; 
prob_mappings = prob_aes prob_var 

{prob_aes | visual_aes prob_var}; 
mappings = prob_mappings coord_mappings 

visual_mappings; 

Geometries 
Based on the distinction between probability and frequency 
formats, we designed two separate geometries for PGoG, 
geom_bloc for area plots and geom_icon for icon-based (or 
unit) representations. 

geom_bloc covers product plots [56] for discrete variables 
and density plots for continuous variables, both using the 
area of a geometry to convey probability values. Though 
geom_bloc includes visualizations similar to product plots, 
Figure 7 shows one of their differences. PGoG’s aesthetics 
combination produces more plot types based on 1D aesthetics: 
by using the x and width aesthetics combination, geom_bloc 
can generate a “lying down” bar chart; despite its resemblance 
to the spine plot (covered by product plots), it has equidistant 
bars determined by the x mapping. Figure 1.2 also shows such 
a bar chart. 

    y <- A
width <- P(A) P(B|A)
color <- B

b1
b2
b3

a1

a2

Figure 8. An icon array with a bar chart layout using geom_icon. The 
aesthetics mappings are listed below the legends. The arrows indicate 
that for width aesthetics, icons are colored first from up to down then 
from left to right. 

A density plot variant of geom_bloc describes a probability 
function of one continuous variable and potentially other dis-
crete variables, see Figure 3. Since the density curves are 
often irregular in shape, the recursive subpartition in product 
plots does not apply. As a result, only one level of coloring is 
allowed within each density shape, and thus the density/contin-
uous variable versions of geom_bloc can accommodate fewer 
aesthetics combinations than the discrete-variable version. 

For the frequency representation, we use geom_icon. The 
name is from icon arrays, a common visualization where 
each icon (or point) represents one observation in the 
dataset [15]. geom_icon differs from a scatter plot geom-
etry (e.g. geom_point) in that the x,y coordinates of an icon 
are not directly provided by the aesthetics mapping as in x <-
A. Rather, geom_icon combines information about the data 
variable and the aesthetics to determine how to place the icons: 

• geom_icon determines the location of each icon with us-
ing all relevant x and y mappings and the first probability 
function factor. This layout rule effectively arranges icons 
into groups, the outline of which can resemble bars (with 
coordinate aesthetics) or spines (without coordinate aesthet-
ics) in the geom_bloc. In the Figure 8 example, the first 
probability function with its associated aesthetics width <-
P(A) and y <- A creates a bar chart-shaped icon array. 
• Each of the remaining probability function factors creates its 

subgroups recursively until all probability function factors 
are processed. 
• Within a group, if the height aesthetic is provided, 
geom_icon applies other aesthetics (e.g. fill color) from 
left to right first and then from top to bottom. If width is 
provided, other aesthetics are applied from top to bottom 
first and then from left to right. Figure 8 visualizes how the 
width aesthetic works within an icon bar chart. It is advis-
able to combine width and height with visual aesthetics 
to differentiate the icon subgroups; the example in Figure 8 
uses fill to color subgroups. 

PROOF-OF-CONCEPT IMPLEMENTATION IN R 
We prototype PGoG in the R language as an extension to the 
popular ggplot2 package [21], hosted at https://github.com/ 
MUCollective/pgog. To make the prototype self-contained yet 
compatible with the rest of ggplot2, we wrap PGoG data, 
aesthetics and geometry computation within two new function 
calls, geom_icon and geom_bloc. The PGoG geometries 
compute probabilistic expressions from data and parse aes-
thetics before returning a layer object to core ggplot2 for 
plot-building. All visualizations produced by the prototype 
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Table 1. Visualization types covered by various grammars. “w/ transformation” means that the coordinates for the icons are obtained by either 
computation beforehand or explicit data transformation in the code. “w/ extension" refers to the ggmosaic extension for ggplot2 [26]. 

Type Icon array Dotplot Bar chart Mosaic plot Density plot 

ggplot2 [21] High-level w/ transformation yes yes w/ extension yes 
Vega-lite [47] High-level w/ transformation w/ transformation yes yes yes 
ATOM [39] Layout-based yes no no no no 
Product Plot [56] Layout-based no no yes yes no 

PGoG High-level yes yes yes yes yes 

can be replicated with existing ggplot2 code, though signif-
icant data manipulation or lower-level library calls might be 
necessary. Overall, the R prototype shows that the PGoG ab-
straction can work alongside an unmodified, existing system 
that implements the Grammar of Graphics. Therefore, we 
anticipate few barriers to implementing PGoG in other similar 
declarative visualization languages, such as Vega-lite [47]. 

EVALUATION 
We first evaluate the expressiveness of the Probabilistic Gram-
mar of Graphics as a visualization grammar. Then, we assess 
the design of PGoG in terms of heuristics from the Cognitive 
Dimensions of Notations. We choose these expert evalua-
tion methods because they are appropriate for the type of 
contribution we make (a formalism) [37] Further, since the 
current implementation of PGoG requires working knowledge 
of Grammar of Graphics and the R language, expert evaluation 
is more practical than user studies [12]. 

Expressiveness 
In line with the convention in recent visualization literature [39, 
44, 47], we view an expressive specification language as one 
that covers a wide range of visualizations types. The PGoG 
grammar can express area plots (including density plots), icon 
arrays, and dotplots, a meaningful coverage unique to PGoG, 
see Table 1. We show the breadth of the plot types covered 
in Figure 3. It is worth noting that Figure 3 does not cover 
all legal combinations on aesthetics and geometries in PGoG 
and leaves out all bar chart/spine plot variants. In addition, 
it is possible to have arbitrarily nested probability expres-
sions for geom_bloc with discrete variables. Overall, the 
expressiveness of PGoG comes from its ability to map prob-
ability distributions directly onto aesthetics, and the flexible 
re-combination of coherent grammar components. 

While PGoG unites many types of probabilistic visualizations 
with various layouts, Figure 1 shows how PGoG is still limited 
in expressiveness in the wild. We categorize what PGoG can-
not cover into two broad categories. First, some probabilistic 
visualizations use special layouts, such as parliament seating 
or hierarchy of probabilities; even though PGoG do not cover 
such layouts, the PGoG concepts often still apply (e.g., use the 
width aesthetics to encode probabilities). The Discussion sec-
tion will suggest how a future version of PGoG might achieve 
some of the special layouts informed by the structure of prob-
ability expression or even statistical models. The other class 
of visualizations express probabilities through visual channels 
not in PGoG; notable examples includes temporal (animation) 
(Figure 1.5) and geospatial channels (Figure 1.6). In the future, 

we plan to cover these and other additional channels to express 
probabilities informed by uncertainty visualization research. 

Cognitive dimensions of notations 
We designed the PGoG grammar to bring probabilistic visual-
ization specification closer to the existing language of proba-
bility expressions, and hopefully therefore closer to the mental 
model of users familiar with that notation. To formalize this 
design intuition, we judge the PGoG grammar against the Cog-
nitive Dimensions of Notations, which “describes the usability 
of notational systems”, including programming languages [6]. 

Below, we highlight several relevant dimensions from Black-
well et al. [6]. Dimensions not included below either evaluate 
similarly to the ones included, or they don’t distinguish PGoG 
from the original Grammar of Graphics. 

• Viscosity: Resistance to Change. A system should not be 
viscous: the user should not have to unnecessarily take mul-
tiple actions to make a change. PGoG avoids viscosity by 
allowing the user to change (probabilistic) variables, aes-
thetics, and geometries independently of each other, so there 
is a shorter edit distance to switch between visualizations 
and the syntax remains consistent, see Figure 9. 
• Visibility: Ability to View Components Easily. PGoG makes 

probability distributions first-class citizens, helping the user 
directly express and visualize the probability expressions 
they want. In other languages, the user needs to translate the 
probability distributions they want into the corresponding 
coordinate and visual aesthetics mappings when writing 
specifications, as shown in Figure 2.d. 
• Premature Commitment: constraints on the Order of Doing 

Things. As we note in the Grammar specification Section, 
PGoG syntax allows the user to compose arbitrary proba-
bilistic variables from column variables. From this angle, 
PGoG avoids premature commitment in that the user can 
keep the data tidy without having to calculate various pro-
portions in the data before visualizing them. 
• Closeness of Mapping: Closeness of Representation to Do-

main. We motivate the design of PGoG with the need for 
“a closer integration between visualization and statistical 
algorithms” [24]. As a result, our notations for probability 
distributions are the same as in statistics. If the user knows 
the distribution they want to specify, they can do so directly, 
as in probabilistic programming. Thus, the user may focus 
more on choosing the probability distribution, or deciding 
whether the frequency format will be more effective. The 
PGoG grammar shields user from of configuring a recursive 
layout or naming the plot they want (e.g. violin plot). 
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Figure 9. PGoG specification shortens edit distances in the space of probabilistic visualizations. This figure reads from left to right: a spine plot, bar 
chart, and dotplot with the same underlying distribution P(cyl, mpg). Compared to existing implementations, the user needs far fewer changes to switch 
from one probabilistic visualization to another. 

• Hidden dependencies: Important Links between Entities Are 
not Visible. There are two main hidden dependencies in the 
PGoG implementation. First, whether the user gets density 
plots or product plots depends on data: if the marginal of 
a probabilistic variable is continuous, PGoG will construct 
a density plot. We choose a more uniform interface (only 
one geometry for all area plots) over two separate geome-
tries named “density” and “product”. Second, if the user 
modifies the conditionals in the overall probability func-
tion, other aesthetics likely need modifying, too. This is 
because all conditionals in a probabilistic variable need to 
be grounded, or mapped to, a coordinate or visual aesthetic, 
as determined by the grammar rules. 
• Error-proneness: The Notation Invites Mistakes and the 

System Gives Little Protection; Hard Mental Operations: 
High Demand on Cognitive Resources. PGoG does require 
the user to factor a desired probability function, which can 
be cognitively demanding for some users. This is necessary 
for an unambiguous specification but can result in errors. 
The user might write factors such as P(A)P(B) instead of 
P(A)P(B|A), thinking that they want the probability for 
event A and B. The current system cannot educate users 
on probability fundamentals; however as mitigation, the 
implementation checks and throws an error when the proba-
bility factors do not multiply to a valid probability function 
(this ensures, at least, that if a chart is generated, it is valid). 
In addition, PGoG infers layout from the probability struc-
ture once they are specified correctly, so it prevents some 
potential errors and alleviates some cognitive demand for 
reasoning about (recursive) layouts. 

Overall, PGoG evaluates favorably against the cognitive di-
mensions of notations: its elegant syntax allows it to stay close 

to the notation of probability distributions. We do identify 
potential hidden dependency and error-proneness problems, 
issues that future user studies might investigate. 

Validation through a visualization algebra 
To show that PGoG can avoid making some misleading vi-
sualizations, we apply the algebraic process for visualiza-
tion design model [31]. Among other things, this model de-
fines a symmetry (“invertible transformations”) in the data 
space (α : D → D) and a symmetry in the visualization space 
(ω : V → V ). These symmetries lead to the Principle of Unam-
biguous Data Depiction for a visualization design: a substan-
tial change in data (α) should result in a substantial change in 
the resulting visualization (ω). In our motivational example 
in Figure 2, the naive ggplot2 version always calculates the 
density plot regions to have equal area. This leads to a viola-
tion of the Principle of Unambiguous Data Depiction: if we 
remove half of the data points for 8-cylinder cars, the visible 
proportion of 8-cylinder cars does not change in the ggplot 
chart; in the PGoG chart, it does (see Figure 10). 

DISCUSSION AND FUTURE WORK 
The Evaluation section demonstrates that PGoG covers a wide 
range of probabilistic visualizations with a descriptive syntax 
close to statistics, while facilitating design exploration through 
combinations of simple aesthetics. In addition to its current 
power and benefits, PGoG has potential to improve how we 
communicate a wider range of uncertainty data. 

Defining visualizations with uncertainty concepts 
Though the current PGoG can express one probability distribu-
tion per visualization, we wish to extend the coverage of PGoG 
to uncertainty data in general. We are interested in uncertainty 
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Figure 10. Evaluating naive ggplot2 and PGoG against the Unambigu-
ous Data Depiction principle in the algebraic process for visualization 
design [31]. For a naive ggplot2 spec (Figure 2.b), removing data 
(transformation α , 1D) is hardly reflected in the visualization (transfor-
mation ω = 1V ); in PGoG, removing the same data shrank the shaded 
region proportionately, indicated by the arrowhead. 

because it is important for decision-making but also difficult to 
communicate; in particular, one of the barriers of visualizing 
uncertainty is a lack of effective visualization techniques and 
tools [14]. The motivation behind PGoG should be transfer-
able to uncertainty visualizations: a Grammar of Graphics for 
uncertainty data may help users externalize uncertainty into 
visualizations. 

There exist many taxonomies for uncertainty data [52, 40, 48]. 
In addition to the single probability distribution PGoG handles, 
the taxonomies cover more complex data structures and se-
mantics, such as the epistemic v.s. aleatory distinction [48] and 
errors [52]. Below, we show how one category, uncertainty 
lineage [52], can translate to effective visualizations with a 
future PGoG extension. 

Leveraging uncertainty lineage and model structures 
Uncertainty data can be hierarchical or sequential (“lineage” 
in Thomson et al.) [52]. For example, a Bayesian mixed 
linear model can produce parameter estimates that can be 
organized in a hierarchy (see Figure 16.3 in Doing Bayesian 
data analysis: A tutorial with R, JAGS, and Stan [33]); in 
machine learning, an event sequence prediction model can 
generate probabilities of state transitions [20]. These structures 
in data (or even in statistical models) can be captured with 
formal specifications, such as probabilistic programs. 

Then, a future version of PGoG can use the structures in data 
(or models) to inform and expedite visualization specifications. 
In addition to maintaining a close mapping between user men-
tal models (uncertainty concepts and models), this capability 
can hide the messiness of common statistical model outputs. 
In the case of Stan, the model output is a combination of scalar 
and vector parameters of different data types drawn from thou-
sands of iterations3. Since these messy parameters are defined 
in the model already, given reasonable defaults, PGoG might 
be able to infer plots from model specifications. For instance, 
a hierarchical model response ∼ (1|condition) might lead to 
two plots: one for condition v.s. posterior predictions, and 
another for condition v.s. posterior distribution of the means. 

3Example of inspecting Stan outputs: https://cran.r-project.org/ 
web/packages/rstan/vignettes/stanfit-objects.html 

With sensible defaults, a future version of PGoG can map 
uncertainty data and model structures onto more visualization 
layouts. These can include as Sankey diagrams and elements 
such as links [44], but they are not yet systematically described 
with a formalization such as the Grammar of Graphics. One 
example of such mapping can be from the summation in the 
law of total probability P(A)= ∑B P(A∩B) to a forking layout, 
such as the one in a New York Times article in Figure 1.3 [4]. 

Enabling uncertainty visualization best practices 
There are effective uncertainty visualization techniques we 
have not included in PGoG. Wilkinson discusses uncertainty 
intervals and several aesthetics to convey uncertainty (“error”), 
such as transparency and blur [58]. Recently, Correll et al. 
proposed a color palette that maps both probability (uncer-
tainty) and data values [10]. Animation can reflect uncertainty 
through sampling, as in the New York Times election nee-
dle [51]. A future version of PGoG can have new aesthetics 
and geometries to represent these sorts of visualizations; e.g., 
aesthetics for temporal frequency could be used to create ani-
mated probabilistic visualizations, such as HOPs [25]. 

Informing uncertainty visualization research 
Beyond the potential for PGoG to facilitate specification of un-
certainty visualizations, it can provide a theoretical framework 
to more systematically study people’s understanding of differ-
ent uncertainty visualization (and probabilistic visualization) 
types. For example, by giving a theoretical definition of an 
equivalent frequency format visualization for any given prob-
ability format visualization (by moving from geom_bloc to 
geom_icon while keeping aesthetics constant), we could more 
comprehensively study the effect of frequency formats across 
a range of visualization types. Or, to better understand how 
people interpret different depictions of the same conditional 
probability distributions, we could study a set of visualizations 
that all use the same probability function expression. This 
would allow us to better understand how well people under-
stand conditional probabilities from different visual depictions 
of the same distribution. 

CONCLUSION 
In this paper, we introduce a new abstraction for visualiz-
ing probability data: the Probabilistic Grammar of Graphics 
(PGoG), a set of new Grammar of Graphics components and 
specification rules. We instantiate this visualization grammar 
in R. PGoG treats probabilistic variables as first class citi-
zens in visualization specifications. This design guarantees 
the correctness of intended probabilities, stays close to users’ 
mental models, and facilitates exploration of probabilistic visu-
alization designs. By instantiating probability concepts within 
visualization, PGoG has the potential to further uncertainty 
visualization research through allowing systematic study of 
probability distributions and their representations. 
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