
ingimp: Introducing Instrumentation
to an End-User Open Source Application

Michael Terry, Matthew Kay, Brad Van Vugt, Brandon Slack, Terry Park
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

mterry@cs.uwaterloo.ca, {matthew.kay, bvanvugt, brandon.slack, t2park.uw}@gmail.com

ABSTRACT
Open source projects are gradually incorporating usability
methods into their development practices, but there are still
many unmet needs. One particular need for nearly any open
source project is data that describes its user base, including
information indicating how the software is actually used in
practice. This paper presents the concept of open
instrumentation, or the augmentation of an open source
application to openly collect and publicly disseminate rich
application usage data. We demonstrate the concept of open
instrumentation in ingimp, a version of the open source
GNU Image Manipulation Program that has been modified
to collect end-user usage data. ingimp automatically
collects five types of data: The commands used, high-level
user interface events, overall features of the user’s
documents, summaries of the user’s general computing
environment, and users’ own descriptions of their planned
tasks. In the spirit of open source software, all collected
data are made available for anyone to download and
analyze. This paper’s primary contributions lie in
presenting the overall design of ingimp, with a particular
focus on how the design addresses two prominent issues in
open instrumentation: privacy and motivating use.

Author Keywords
Open source usability, avatars, personas, GIMP, OSS, free
software, GPL

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User
Interfaces, evaluation/methodology.

INTRODUCTION
The open source software community has a rich set of tools
at its disposal to support distributed software development.

Source code repositories, bug tracking systems, and even
tools as simple as “patch” all help to coordinate the
activities of individuals who may never meet face-to-face.
Importantly, these tools not only coordinate project
members, they also open up the development process to the
larger community: Individuals external to an open source
project can download the source code, fix bugs they
discover, submit patches, or simply report a bug, all without
needing any special credentials or access rights to do so.
The ability for anyone to participate is often cited as a
potent catalyst for the creation of open source software
[19].

While a mature set of tools scaffold open source software
development, comparatively fewer tools exist to scaffold
usability efforts in open source projects [1, 14]. To date,
open source usability efforts have been primarily supported
through general-purpose communication tools (e.g., mailing
lists and blogs), repurposed development tools (e.g.,
Bugzilla), and a handful of resources, such as human
interface guidelines (HIGs) [5, 9]. Collectively, these tools,
along with an increasing number of project members
dedicated to usability concerns, have done much to help
bootstrap usability efforts in open source projects.
However, a number of needs persist.

One of the unmet needs of the open source community is
data describing the larger community of users: Who uses
the software, for what purposes, with what level of
expertise, in what types of computing environments, and so
on. This descriptive data complements usability data by
quantifying the community’s actual day-to-day usage of the
software, painting a picture of the user community not
attainable by usability studies alone. For example,
command usage counts can suggest which aspects of the
interface are most important to the community, and which
are not. Commercial software companies have gathered this
type of data for years (e.g., [13]) and numerous research
efforts have shown how these data can feed into usability
practices (e.g., see [7] and [8] for surveys of techniques).
However, the open source community lacks any dedicated
infrastructure to collect this type of data, making it difficult
for projects to empirically describe their user base.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00.

In this paper, we introduce the concept of open
instrumentation as a means for open source projects to
collect data summarizing the actual, real-world practices of
its users. Like other software instrumentation, open
instrumentation implies the augmentation of an application
to collect data regarding its use, such as what commands
are used. However, in contrast to previous instrumentation
efforts, open instrumentation follows the ethos of the open
source community’s culture of practice and makes all
collected data publicly available. This public availability is
intended to make it possible for non-project members to
make meaningful contributions to the usability process,
similar in spirit to the development process itself.

We demonstrate open instrumentation in ingimp, a version
of the GNU Image Manipulation Program (GIMP) modified
to collect five types of usage data: The commands used,
high-level user interface events, overall features of the
user’s documents, summaries of the user’s general
computing environment, and users’ own descriptions of
their planned tasks. All collected data are automatically sent
to a central web server, http://www.ingimp.org, where they
are made publicly available for anyone to download and
analyze. In addition to the raw data, the ingimp website
provides a number of statistical summaries of the
community’s use of the software (e.g., most frequently used
commands).

This paper’s primary contributions lie in conveying the
lessons learned in transforming the known technique of
instrumentation to operate within the sociocultural context
of open source software development. For the purposes of
this paper, our primary focus is on how ingimp’s design
addresses issues of privacy and motivating use.

The public availability of collected data raises obvious
concerns regarding privacy and anonymity. In particular,
usage data should be collected in a way that minimizes the
risk that sensitive personal information is collected. As
such, we developed a set of conventions to govern the
design of ingimp’s data collection methods. We describe
these conventions and their application to instrumentation,
whether open or closed.

ingimp also constitutes a third-party “fork,” or derivative,
of the official software distribution. As such, there is the
need to motivate use since the forked version does not offer
significant, additional, end-user functionality. To address
this need, the ingimp website features personal and
personable statistics to compel use. Specifically, the ingimp
application provides a command to automatically connect
users to the ingimp website in a way that allows them to
view their own personal statistics alongside the
community’s statistics. For example, the user can view their
most frequently used commands alongside the community’s
most frequently used commands.

In addition to these personalized statistics, the ingimp
website dynamically generates an ingimp persona for each
user (Figure 1). The ingimp persona is a basic information

visualization that augments an avatar with items depicting
the user’s typical use. These personas make the data more
personable by summarizing information in more familiar
terms. The personas also allow the creation of a “group
snapshot” of the entire community of users.

The rest of this paper is organized as follows. First, we
review the concepts of open source software (OSS) and
OSS development. We summarize current usability
practices for OSS projects, which serves to motivate the
need for usage data within this community. We then present
the concept of open instrumentation and describe its
instantiation in the design of ingimp, including mechanisms
designed to motivate use. Next, we more fully describe the
data collected by ingimp and the set of conventions we
developed to guide decisions regarding what data to collect.
Results from an initial qualitative study are presented and
we conclude with directions for future work.

OPEN SOURCE SOFTWARE DEVELOPMENT
In this section, we provide a brief background on the
concepts of open source software, starting with a discussion
of its licensing model and associated development
practices. We then review current usability practices in this
community and identify unmet needs.

Figure 1. The ingimp website dynamically generates
personas for each user (shown above). An ingimp
persona summarizes the most frequently used
commands (which are held in the right hand), the
typical size of images worked on (held in the left hand),
and the types of tasks (indicated here by the camera and
clippings of images on the ground).

Open Source Software Licenses
Open source software, by definition, refers to software that
includes access to the software’s source code. Numerous
philosophies and licenses intersect with this basic concept
(e.g., free software [4], open source software [18], the GNU
Public License [4], the BSD license [18]), but all include
the basic provision of providing access to the software’s
underlying source code.

To be considered an open source license as approved by the
Open Source Initiative (OSI) (a non-profit organization
dedicated to open source software development [18]), an
open source software license must meet a number of
additional requirements. Among other requirements, an
OSI-approved license must include the right for third
parties to modify the code and redistribute derived works
under the same terms as the original software. In practice,
this provision is typically embodied in such a way that a
third party can, at any time, create and distribute a
derivative of the original software, without obtaining
explicit permission to do so. This aspect of open source
software is immensely powerful: As long as one follows the
requirements of the original license, one can create a new
application derived from existing open source software,
saving significant time and effort compared to building the
software from scratch. There are countless examples of
third parties taking advantage of this property of open
source software: Apple based their Safari web browser on
the KDE project’s HTML rendering code [23], Tivo based
its digital video recorder system on a modified version of
Linux, and the web browser Firefox forked from the
Mozilla web browser.

The provision to allow derivative works can lead to a
problem fairly unique to open source software: identity
management. In particular, derivative works, or “forks,”
require end users to educate themselves about the different
versions available to understand which version best fits
their needs. While a similar problem can arise in the
distribution of commercial software (e.g., the multiple
versions of the Microsoft Windows operating system), open
source projects have little control over who creates
derivatives or how they are presented to the public. This
property of open source licenses has implications for
research work done within this domain since it requires
research efforts to differentiate themselves from the official
software efforts.

Open Source Software Development Practices
Open source software, in its strictest sense, refers to a
particular licensing model for a piece of software. However,
it is also strongly associated with a particular style of
software development. In particular, open source software
development is equated with a transparent, open process in
which anyone can participate and make contributions [19].
Proponents of open source software maintain that this
culture of practice confers a number of advantages, such as
the rapid discovery and resolution of critical bugs [19].

A range of development tools help to create and maintain
this open development process. Source code repositories
(e.g., CVS or Subversion) coordinate activities from
multiple developers; bug tracking software such as Bugzilla
or Trac offer a dedicated forum for collecting, assigning,
and discussing software deficiencies; and “diff” and
“patch” allow individuals to submit source code
modifications via mailing lists, making the barriers to
contributing code extremely low. After an initial setup cost,
these tools, for the most part, require little maintenance.
They also serve to enforce particular work styles, which is
important when managing the project. For example,
Bugzilla provides a very structured way to submit, assign,
and discuss bugs. This structure standardizes the bug
reporting process and creates a certain consistency across
all projects that use this infrastructure.

The features of current open source development tools and
infrastructure collectively suggest a set of ideal
characteristics to strive for in the development of any open
source process support tool. In particular, any such tool
should:

• Natively support the creation and manipulation of
the data of concern (where in the case of software,
the primary data is source code, represented by
text)

• Make work practices open and transparent to the
public to make public participation possible

• Provide a low barrier for public participation

• Scaffold desirable work practices

• Have low, long-term maintenance costs

While it may not be possible to embody all of these ideals,
the more fully each is realized in a tool, the more likely it
can leverage the unique attributes of the open source
community’s culture of practice. These desiderata are
important to keep in mind when designing tools to support
usability practices within the open source community.

Open Source Usability
The open source software community has demonstrated its
capability to create systems software such as web servers
(e.g., Apache) and operating systems (e.g., Linux and the
various flavors of BSD). Having achieved this success, the
community has identified software usability as an issue that
needs to be better and more consistently addressed within
its current development practices (e.g., [1, 14]).

“Usability” is a broad term that can refer to a wide range of
software attributes, including efficiency, learnability, and
subjective satisfaction [17]. The open source community is
gradually starting to realize that achieving these goals
requires a range of practices, including requirements
gathering, design, and evaluation.

Current open source usability efforts are typically supported
via general-purpose communication tools, repurposed
development infrastructure, and usability-specific
resources. We review each of these support mechanisms in
turn and discuss their respective benefits and drawbacks.

General purpose communication tools, such as email, IRC,
newsgroups, and blogs, have all been put into service to
support usability efforts within the open source community
[15, 22]. These tools support general, unstructured text-
based discussions about usability issues. The medium of
text ensures that any user can access and participate in these
communications, but has obvious limitations in the realm of
usability. In particular, other media can more effectively
communicate visual designs, prototypes, and results from
usability sessions. To partially address the deficiencies of
text, blogs have been identified as a medium to support the
presentation and discussion of prototypes [15]. However,
blogs still lack tools for the direct production and
manipulation of graphical data. As a consequence, the
easiest way to build on, critique, or respond to these designs
is by leaving a text-based comment on the blog.

Some of the existing development infrastructure has been
repurposed to support usability efforts. Most visible is the
use of Bugzilla to support the submission and tracking of
usability issues. Bugzilla provides structure to help log and
track usability issues, but it is primarily text-based (though
one can attach images to bug reports). This reliance on text
carries with it the same issues for the text-based
communication tools described above.

In addition to these repurposed tools, a number of resources
have been developed to specifically address usability
concerns. Organizations such as Sun and Novell have
conducted usability tests (e.g., [1, 2]) and contributed
resources to support the construction of human interface
guidelines (e.g., the GNOME Human Interface Guideline
[5]). In the spirit of open source development, the results of
lab-based usability tests, including the raw data itself, are
publicly available at sites such as www.betterdesktop.org.
Lessons learned from the usability tests have contributed to
important redesigns of software such as the GNOME
window manager. Similarly, the human interface guidelines
have been shown to be a useful arbitrator when exploring
design alternatives, suggesting their long-term utility [15].

Various grass-root efforts have also arisen to support open
source usability. Examples include openusability.org and
flossuability.org. openusability.org is a web-based service
designed to pair usability experts with open source projects,
to host usability discussions, and to serve as a repository for
relevant usability information. At the time of this writing,
the site no longer pairs experts with projects due to an
apparent lack of usability experts. flossusability.org, on the
other hand, organizes FLOSS (Free / Libre / Open Source
Software) “sprints” to educate open source project members
about usability techniques and practices.

Unmet Usability Needs in Open Source: Usage Data
The current set of practices adopted by the open source
community has done much to begin to address usability
issues in the development of open source software. But
while projects are becoming more adept at discovering and
discussing usability issues, they still lack data describing
their user base: Who uses the software, for what purposes,
how often, with what level of expertise, using what types of
computing environments, etc. Benson, speaking from the
position of a contributor to open source usability efforts,
cites this deficiency, questioning how reliable it is to
characterize a community of users by only considering the
opinions represented on a project’s mailing list [1]. Mailing
lists and bug tracking systems provide a valuable means for
users to identify unmet needs or usability issues, but
research indicates that only a very small percentage of users
actually participate in such forums [16]. Without these data,
it can be difficult to prioritize efforts, because it is not
generally known what aspects of the software are most
important to the community in day-to-day use. The need for
usage data is especially great for applications with a broad
feature set, such as office applications or graphics
applications, since these applications can be applied to a
wide variety of tasks. In the absence of empirical data,
developers must rely on instinct and anecdote when
estimating what development efforts will have the most
significant impact on the community of users. Software
instrumentation is one means of obtaining data to answer
these questions.

Software Instrumentation
Commercial software companies and researchers regularly
deploy instrumented applications to understand the actual
practices of users. These instrumented applications
typically capture user interface events, such as command
invocations, window events, and interaction with controls.
For example, Microsoft Office includes facilities to track
various features of how it is used [13]. Instrumentation is
also commonly used to study use of web-based
applications.

The data that results from instrumentation is most
accurately characterized as usage data, as opposed to
usability data. The distinction is subtle, but important,
because it suggests what questions each data type can best
answer. Usability data describes areas of an application’s
design that could be improved, and is the result of expert
evaluations, heuristic evaluations, in situ observations, and
other evaluation methods.

Usage data, on the other hand, is a rawer form of data.
Usage data summarizes how the software is used, without
attempting to interpret whether that usage indicates
usability flaws or not. While past research has demonstrated
how usage data can lead to the discovery of specific
usability problems (e.g., see [7, 8]), we note that usage data,
on its own, is useful by virtue of its ability to describe how
a community actually uses the software on a day-to-day
basis. For example, usage data can describe users’

computing environments, the commands they typically use,
and the types of documents they work on. These data, in
turn, can feed into the design process by suggesting whether
particular designs are likely to positively affect a significant
number of users, given the community’s computing
environment and practices.

OPEN INSTRUMENTATION
Open instrumentation transforms the concept of
instrumentation to match the ethos of the open source
community: Both the instrumentation itself and the
collected data are made available to the public. While
simply stated, there are issues that must be recognized when
publicly collecting and disseminating application usage
data.

Open instrumentation is intended to address the OSS
community’s need to understand its user base, in a way that
matches the community’s culture of practice. However, the
open nature of such instrumentation amplifies issues
present in any software instrumentation. Specifically, there
is the need to minimize the risk that sensitive, personal
information could be collected, since all collected data are
made public. Additionally, there is the need to compel use
of the software, since the benefits of using the instrumented
version are not immediate or tangible. We explore these
issues later in the design of ingimp.

The notion of open instrumentation is not wholly new.
Fedora’s smolt [20] and Debian’s popularity contest [3]
collect data about the user’s computer hardware, and what
software packages are installed, respectively. Crash reports
also represent a form of instrumentation, since they provide
information about the state of the computer when it crashed
[21]. Past research has instrumented open source
applications to statistically determine where there are bugs
in the software [10]. However, none of these efforts have
collected detailed, high-level application usage data.
Finally, recent research has demonstrated how a community
can collectively report and avoid bugs while using the
software [12]. We turn now to a description of ingimp, an
openly instrumented application designed to collect this
type of data.

INGIMP: END-USER DESIGN

System Overview
ingimp is a fork of the GNU Image Manipulation Program
(GIMP), a general purpose bitmap editing application.
ingimp adds instrumentation capabilities to GIMP to collect
information about how the software is used in practice. All
collected data are automatically transmitted to the ingimp
website (http://www.ingimp.org). The website makes the
data accessible in both raw and summarized form.

The majority of data collection in ingimp happens
transparently in the background as the individual uses the
software. However, ingimp also provides the option for
users to describe, in their own words, what their intended
tasks are. At start-up, users can indicate their intended task

via “Activity Tags” (Figure 2). This free-form text field
provides a means to discover how individual users perceive
their tasks, in terms that are meaningful to them.

The ingimp start-up screen also includes a button labeled
“Website + Stats.” This button provides a direct link to the
ingimp website and the statistics that have been collected;
when pressed, it will cause a web browser to load the
ingimp statistics page.

This direct link to the website is also the means by which
the user can view personal statistics that summarize their
own use. For example, users can see the most popular
commands used by the community, as well as the most
popular commands they, themselves, use.

ingimp User Experience: Client Application
ingimp augments the end-user’s experience of GIMP with
the following, additional elements: a consent agreement, the
ingimp start-up screen, the ability to communicate post-
installation updates and news, and a remote kill switch.

Consent Agreement
Before logging can occur, ingimp displays a consent
agreement to which the user must consent before logging
occurs. For reasons described below, users can deny
consent, but still launch the application. In this case, the
application will not collect data. However, each time the
application starts, the consent agreement will be shown
until consent is granted.

The somewhat unconventional interaction sequence
described above (i.e., still launching the application, even if
consent is not given) illustrates one of the subtle ways in
which the open source ethos can affect interaction design.
Specifically, in most cases, one would simply design the
application to quit if consent was not given. However,
doing so would violate some important tenets of some open

Figure 2. The ingimp start-up screen allows users to
describe their intended task, visit the website to view
personal statistics, or launch GIMP. Users also have the
option of disabling logging each time the application is
started.

source groups. In particular, to be included with the Debian
Linux distribution, one must conform to their guidelines,
which expressly forbid the inclusion of software that
attempts to limit who can use the software. As such, to be
included in this distribution, we needed to provide a means
for users to continue to use the software, even if they did
not consent to having their activity logged. This gave rise to
the consent process described above.

The consent agreement provides details of the types of data
collected and also describes ways a user’s privacy could
potentially be affected. Importantly, the consent agreement
makes no claims of confidentiality. While we have designed
ingimp to collect data that respects an individual’s privacy,
the public availability of the collected data makes it
unreasonable to make any claims or guarantees regarding
an individual’s confidentiality.

ingimp Start Screen
Every time ingimp starts up, the start screen is shown
(Figure 2). The start screen serves a number of purposes: It
provides the option to disable logging, it provides facilities
for users to enter “Activity Tags,” and it offers a direct link
to the ingimp website and its statistics. Most importantly,
the start screen serves as a constant reminder that the user is
using a specially modified version of GIMP. Accordingly,
there is no option to disable the start screen (as is common
with other informational start-up screens, like those that
provide tips or task “wizards”).

The Activity Tags’ free-form text-entry field is provided to
allow users to describe, in their own words, how they plan
on using the software. Adopting common nomenclature, we
call these descriptions “tags” to suggest one should enter
pithy descriptions. Even with this suggestion, the potential
variation in task description can be great. To help constrain
the types of responses, the design includes two elements to
suggest how to fill out the field. First, we adopt the
convention of completing a sentence: A label to the left of
the entry field reads, “I will be doing…” suggesting that the
sentence should be completed. Second, below the input
field, an example illustrates one way to complete the
sentence.

All text entered in the Activity Tags field is added to the
log, without alteration. To make this point clear, and to
remind users of this fact each time they enter text, the label
for Activity Tags includes the parenthetical note
“(Logged)”.

The ingimp start screen includes two push buttons, one that
provides access to the website, and a second that launches
the application itself. The “Website + Stats” button serves
several purposes. When clicked, it opens a local browser
window to the ingimp statistics page, reducing the need for
the user to know where or how to view data collected from
the application. To the best of our knowledge, this
represents the first example of an instrumented application
providing a direct link to the collected data.

The “Website + Stats” button also serves as the means by
which users can view their own, personalized statistics. If
the user were to go directly to the ingimp website, it would
be difficult to provide a method for users to selectively
display their own personal statistics, since the gathering of
the statistics is meant to provide a measure of anonymity.
To get around this problem, the “Website + Stats” button
sends the user’s randomly generated ingimp ID when
requesting the page. This idea serves to filter the data
presented to the user.

Post-Installation Feedback
When quitting the application, the logged data is
automatically transmitted to the web server. During this
transmission, the web server can optionally send back a
text-based message to display to the user. This feedback
mechanism is similar to other informational, update
mechanisms commonly found in software, though it does
not currently provide the means for automatically updating
the software. Instead, it is intended to provide the ability to
directly communicate any new study information to the
user.

Kill Switch
ingimp provides a “kill switch” to allow researchers to
remotely disable ingimp’s logging facilities. Each time the
application is closed, the software checks for this remote
kill switch. The remote kill switch provides a means for
researchers to inform subjects that the study is done, and to
disable the experimental software. (The software will
continue to function, minus the logging features.)

ingimp Website: Personal and Personable Statistics
Past research suggests that users value feedback when
participating in remote usability efforts [6]. As such, ingimp
provides such feedback through the personal and
personable statistics available on the website.

The aforementioned “Website + Stats” button takes users
directly to the ingimp persona page. For each user, a
persona is dynamically generated that summarizes their
typical usage (Figure 1). The persona is a basic information

Figure 3. A “group shot” of the ingimp community,
derived from individual ingimp personas. This shot is
dynamically generated and displayed on the ingimp
website.

visualization: Representations of the most frequently used
classes of tools are held in the persona’s right hand, while
the left hand holds a canvas related to the user’s typical
tasks and common image sizes. For example, if the user
normally works on relatively large images (of several
mega-pixels), the persona is shown holding a large canvas.
Conversely, if the user typically works on relatively small
images (for example, for web pages or icons), the persona is
shown holding a set of small, wallet-sized images.

Each user is assigned to one of five different “use”
categories: new users, those who manipulate photographic
images, graphic designers, painterly artists, or “cut and
paste” artists (e.g., those who create “mash-ups”). These
classifications arose from an initial study of users, but
should not be interpreted as a canonical set of types of users
for ingimp. Rather, they serve as a useful starting point for
making expressive personas. The generation of the personas
is driven by a combination of hand-coded rules and k-
means clustering. A more complete discussion of the
mechanisms for deriving personas is beyond the scope of
this paper.

The ability to create personas for each individual enables
the creation of a “group snapshot” of the entire community,
which is shown on the website (Figure 3). At present,
personas are randomly arranged within the group snapshot;
there are obvious opportunities to enhance the composition
of the group shot to create other information visualizations.
For the time being, the group snapshot serves to give users
a sense of community, and a sense of belonging to a larger
effort.

Given this view of ingimp from the user’s perspective, we
turn now to a description of its internal data collection
methods.

INGIMP: DATA COLLECTION AND PRIVACY
ingimp collects five primary types of data:

1. Commands used

2. Fundamental user interface events

3. Features of the user’s documents

4. Information regarding the user’s general
computing environment

5. User’s own (optional) descriptions of their tasks

The choice of data types was driven by an examination of
the types of data collected in previous instrumentation
research (e.g., [7, 8]) as well as results from our own
observational studies of users that suggested key types of
data to collect. This initial set of data closely mirrors past
instrumentation work, while adding some relatively unique
measures (such as features of users’ documents). We briefly
describe each type of data, followed by a discussion of
privacy issues associated with these data. However, in this
paper, we do not describe how we are making use of these

data. Instead, we refer interested readers to the ingimp
website to view our current statistical analyses.

Commands
ingimp automatically logs all commands that appear on the
undo stack. Command names, but not command
parameters, are directly recorded in the log file. While
command parameters would provide additional data useful
for understanding users’ tasks, this data would enable
reconstruction of a user’s personal work process.

The collection of command names helps indicate the types
of tasks in which people engage, the variability of their
tasks, and their potential level of expertise (i.e., some
commands are indicative of more expert use).

While ingimp does not collect parameters for commands, it
does record a summarization of the strings used for file
names and layer names. These summaries help track
activity across sessions (e.g., whether they repeatedly work
on the same file) and whether users customize layer names.
Specifically, ingimp records the number of letters, numbers,
punctuation marks, and forward and backward slashes in
strings. Additionally, ingimp generates and records a 32-bit
hash of the entire string to help track string usage across
sessions. In the original release of the software, this 32-bit
hash was directly recorded in the log file. However, this 32-
bit number, together with the length of the string, allows
one to perform a brute-force search to discover the original
string. Accordingly, the current version of ingimp generates
an arbitrary 32-bit number to associate with the generated
hash. The association between the arbitrary number and the
hash is recorded on the user’s machine, but only the
arbitrary number is recorded in the log file. This method
enables one to track the use of identical file names and
layer names across sessions, while substantially decreasing
the chance that a third party can reconstruct the original
strings.

User Interface Events
ingimp logs fundamental user interface-level events:
Window events (focus, move, resize), keyboard and mouse
usage (but not the actual keys or mouse locations), the state
of modifier keys, menu usage, and tool selections. Mouse
button events are recorded and include the button pressed,
but not the location of the cursor. Cursor location would
allow reconstruction of a user’s work with tools such as the
paintbrush, and thus impact users’ privacy. Tool selection
changes are recorded (e.g., selecting the paintbrush), though
any parameters specific to the tools are not recorded (such
as the brush size or its color). These interface events help to
characterize interaction preferences, such as document
window sizes, the preference for the mouse versus
keyboard, and so on.

Document Characteristics
Unique to ingimp is the collection of data that characterizes
the documents themselves. In particular, ingimp collects
information regarding:

• The number of layers in an image

• Image and layer sizes

• Histograms of images and their individual layers

The use of layers suggests a certain degree of sophistication
with the application. That is, novices typically do not use
layers, being unaware of their presence or functionality. As
such, this information helps to categorize the various types
of users.

The image and layer sizes also help to characterize the
types of data users work on. For example, standard digital
camera image sizes can be easily identified.

Image histograms are constructed from the pixel values and
provide a richer description of the types of images that
users operate on, without revealing the actual content. One
of the most immediate uses of these histograms is to
distinguish between photographic images and other types of
graphics, such as line art; the former are typified by full,
variable histograms, while histograms for the latter tend to
have very “spiked,” sparse peaks because of the low
number of colors in the image.

Computing Environment
ingimp records basic characteristics of the user’s computing
environment: Their operating system, the number of
monitors, and the resolution of each monitor. ingimp also
records the time zone of the user, but not their precise
geographic location. Though the user’s location could be
approximated via their IP address, we do not make use of
their IP address for privacy reasons. These data suggest the
general geographic regions of ingimp users.

Activity Tags
As described above in the “User Experience” section, users
can use Activity Tags to enter free-form text-based
descriptions of how they plan on using ingimp.

Addressing Potential Privacy Concerns
Making collected usage data publicly available creates
obvious privacy concerns: There is always the possibility
that personal information could unintentionally be
discovered about the user, even if that information was not
explicitly collected. This risk is present in any software
instrumentation, whether closed or open, but the issue is
particularly salient in open instrumentation.

Recognizing that it is impossible to guarantee complete
anonymity in the design of any instrumented software
application, there were a number of conventions we
employed to help minimize privacy concerns. These can be
summarized as follows:

• Do not collect command parameters, just
command names

• For user-supplied strings that are directly recorded
in the log file (i.e., strings supplied by the user),

make it clear to the user that the string will be
directly recorded in the log file without alteration

• Record summarizations of strings if necessary, but
use arbitrary keys to track strings across sessions

• Know what data the functions will log

• Record the log file in a human-readable format

Do Not Record Parameters
The first guideline, do not record parameter values, helps to
prevent third parties from recreating the work of another
user. In the design of ingimp, we found a number of non-
obvious applications of this guideline that illustrate its
utility. As an example, when the user selects a color for the
paint brush, one could assume that this single piece of
information (brush color) is innocuous enough to record.
However, recording all colors chosen by a user would allow
a third party to recreate a user’s color palette, which could
be considered part of a graphic designer’s “signature look.”
Since paint color constitutes a parameter for a command
(where the command is to paint), application of this rule
helps avoid this issue.

Alert Users to Directly Recorded Strings
Strings represent some of the most personal pieces of
information that could be recorded in an instrumented
application. As such, we are careful to highlight cases in
which strings are directly copied into the log file.
Application of this rule can be seen in the Activity Tags
reminder that the tags are logged, and in the consent
agreement, which indicates command names are directly
recorded.

Summarize Other Strings When Necessary
If it is useful to note features of a string (e.g., for the
purposes of understanding file naming conventions, or how
often users stray from automatically generated names, such
as “Layer 1,” “Layer 2,” etc.), strings can be summarized in
the log file, rather than directly copied. As noted above,
however, the tracking of strings (or other objects) across
sessions should be done using an arbitrary ID.

Know What Data Is Recorded
This guideline seems obvious and not necessary to state.
However, it is important to consider for the simple reason
that one must understand the different circumstances under
which a logging routine could be called, and with what
types of data. To illustrate this point, consider the logging
of command names in ingimp.

GIMP has a plug-in architecture that allows third parties to
extend its capability with scripts and plug-ins. Each script
or plug-in has its own unique name, supplied by the author
of the extension. As such, a user could create a personal
script and use it in GIMP. However, if the script has
personal information in the script name (e.g., “ACME
Widgets’ Rotoscoping Script”), this information will be

directly recorded in a log file as-is. Because of this
possibility, ingimp explicitly describes this scenario in its
consent agreement to alert users to this potential privacy
problem.

Use Human Readable Log Formats
ingimp’s file format is XML-based. It uses intentionally
verbose, descriptive names to increase the ability to
comprehend the log files without the need for additional
tools or instruction. Raw, unprocessed log files are
available on the website to satisfy curiosities or questions
users may have about what is logged.

The guidelines presented above should not be taken as a
canonical (or sufficient) set of rules for addressing privacy
concerns in openly instrumented application. However, as
we designed the application and developed these heuristics,
we found them useful in guiding decisions regarding what
data to collect and not collect. Future efforts should
continue to explore and evaluate data collection policies for
openly instrumented applications to understand users’
perceptions and concerns, as well as implications for what
can or cannot be known about users via the collected data.

INGIMP: INITIAL EVALUATION
ingimp, both the client and website, was evaluated using
interviews and a think-aloud observational study. The intent
of these sessions was to holistically evaluate the entire
ingimp application, both the client and website, to
understand how people used and reacted to the open
instrumentation and its features.

Six subjects participated in this initial study. All were
undergraduate university students. Using a machine we
supplied, each user was asked to navigate to the website,
locate the software, and download and install it. They were
then asked to create a logo for the software. When finished,
we asked subjects to view their statistics on the website.
Sessions lasted 45-60 minutes each.

Summary of Findings
Most users in our study spent little time reading the
software’s consent agreement, though some did take the
time to carefully read it. This discovery suggests the need to
enhance the likelihood that end-users read and comprehend
the consent agreement so they fully understand the risks
involved in using ingimp. We have begun work addressing
this issue by including illustrations with the consent
agreement text that visually depict ingimp’s data collection.

After completing the task, we asked subjects to examine
their statistics on the website. This request revealed that the
majority of users did not notice the “Website + Stats”
button when they first started the software, suggesting the
need to explore additional ways to bring this functionality
to users’ attention. This remains an open problem.

Once subjects did navigate to the website, they all enjoyed
exploring the statistics. Our subjects particularly liked to
browse the statistics summarizing command use, often

commenting that it would be a useful mechanism to
discover functionality in the software that they were not
aware of. This finding suggests that the data collected could
also serve as a tool to help users become more adept at
using the software, similar in spirit to related efforts that
have used usage data for this purpose [11].

The ingimp personas were also favorably received. A
number of suggestions arose concerning their design and
presentation. First, some subjects expressed the desire to
see how their persona changes over time. Such a feature
could help indicate whether one’s expertise is maturing.
Users also indicated that it would be useful to provide a key
to describe the various elements in the visualization. Such a
key could be quite literal (akin to legends on maps), or
interactive. For example, one user suggested the ability to
mouse over portions of the visualization to get more detail
about that component, including the numerical data
represented by the component.

When interviewed about privacy concerns, subjects did not
express any concerns about ingimp’s logging capabilities.
One student bluntly stated, “We are students, we don’t care
about privacy.” Apart from this extreme response, students
cited a handful of reasons that privacy was not a large
concern: The software is an image manipulation
application, and thus does not handle sensitive, “private”
information; the source code is available, leading them to
assume that the community could “police” the software and
discover any privacy issues; and there was a general degree
of trust that the software would not attempt to maliciously
collect information. In some sense, these reactions bode
well for future open instrumentation efforts. On the other
hand, they suggest that the average user may not fully
understand all of the potential implications of open
instrumentation. It would be useful to more widely explore
views of open instrumentation in the open source
community.

The results of this initial study suggest that open
instrumentation is an option worthy of further exploration.
In particular, the statistics, both for individuals and the
community, seem to be compelling to users. The
dynamically generated personas also seem to favorably
predispose people to the notion of instrumentation. Though
demonstrated in the context of an open source application,
it is likely that these techniques would be favorably
received in other contexts, as well.

CONCLUSION AND FUTURE WORK
Open source software has matured from software made for
and used by hobbyists, to software that industry,
governments, students, and many others rely on, on a day-
to-day basis. It has been proven to be a viable, inexpensive
alternative to commercial offerings, and is increasingly
advocated for use in developing countries’ IT infrastructure
because of the benefits it can accrue to local economies
[24]. The usability of open source software can thus have a
profound effect on the hundreds of thousands of people

who adopt it for philosophical, political, and/or economic
reasons, making it in an important issue for the HCI
community.

This paper has presented work aimed at addressing one
identified need of existing open source usability efforts,
namely, the collection of usage data. We presented methods
to motivate end-user use of instrumented software and
described a set of conventions to guide the design of data
collection to help minimize privacy concerns. The lessons
learned in the design of the client and website are directly
applicable to other instrumentation efforts, though we
caution other open source projects to proceed carefully with
similar efforts. Open instrumentation is a delicate issue, the
consequences of which we are still actively exploring.
While ingimp demonstrates that it is possible, the long-term
benefits must clearly outweigh any potential impact to
users.

ingimp was first deployed in May 2007 and has been
installed by over 700 users in the first six months of its
release. We are now just beginning to analyze the data
being collected, but the data analysis has demonstrated one
particular need for future work. The ingimp site currently
has a modest set of statistical summaries, but more are
clearly needed. However, one of the current limitations of
the current ingimp website is that the public cannot actively
participate in the development and discussion of statistical
analyses through the website itself. Thus, our next line of
investigation is to examine the possibility of extending the
website to allow users to post SQL-like code to create their
own statistical summaries. These posts may follow a wiki
or blog-like format, but the overall goal will be to move
beyond the fixed summaries we provide, to truly open up
the data analysis process to the entire community.

REFERENCES
1. Benson, C., Muller-Prove, M., and Mzourek, J. 2004.

Professional usability in open source projects: GNOME,
OpenOffice.org, NetBeans. In CHI '04 Extended
Abstracts, pp. 1083-1084.

2. Better Desktop. http://www.betterdesktop.org
3. Debian Popularity Contest. http://popcon.debian.org
4. The Free Software Foundation. http://www.fsf.org
5. GNOME Human Interface Guidelines 2.0.

http://developer.gnome.org/projects/gup/hig/2.0
6. Hartson, H. R., Castillo, J. C., Kelso, J., and Neale, W.

C. 1996. Remote evaluation: the network as an
extension of the usability laboratory. In Proceedings of
CHI’96, pp. 228-235.

7. Hilbert, D. M. and Redmiles, D. F. 2000. Extracting
usability information from user interface events. ACM
Comput. Surv. 32, 4 (Dec. 2000), 384-421.

8. Ivory, M. Y. and Hearst, M. A. 2001. The state of the art
in automating usability evaluation of user interfaces.
ACM Comput. Surv. 33, 4 (Dec. 2001), 470-516.

9. KDE Human Interface Guidelines.
http://usability.kde.org/hig

10. Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. I.
2003. Bug isolation via remote program sampling. In
Proceedings of the ACM SIGPLAN 2003, pp. 141-154.

11. Linton, F., Schaefer, H.P.: Recommender Systems for
Learning: Building User and Expert Models through
Long-Term Observation of Application Use. User
Modeling and User-Adapted Interaction 10(2-3): 181-
208 (2000)

12. Michail, A. and Xie, T. 2005. Helping users avoid bugs
in GUI applications. In Proceedings of the 27th
international Conference on Software Engineering
(2005). ICSE '05. ACM, New York, NY, 107-116.

13. Microsoft Office Customer Experience Improvement
Program (CEIP). http://office.microsoft.com/en-
us/help/HA100377971033.aspx

14. Nichols, D.M. & Twidale, M.B. (2003). The Usability
of Open Source Software. First Monday 8(1) - January
6th, 2003.

15. Nichols, D.M. & Twidale, M.B. (2006). Usability
Processes in Open Source Projects. Software Process -
Improvement and Practice Journal: Special Issue on
Free/Open Source Software Processes. 11(2) 149 – 162.

16. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida,
K., and Ye, Y. 2002. Evolution patterns of open-source
software systems and communities. In Proceedings of
the international Workshop on Principles of Software
Evolution (Orlando, Florida, May 19 - 20, 2002).
IWPSE '02. ACM Press, New York, NY, 76-85.

17. Nielsen, J. Usability Engineering. Boston: Academic
Press. 1993

18. Open Source Initiative. http://www.opensource.org
19. Raymond, E.S. The Cathedral and the Bazaar. First

Monday, 3, 3 (March 1998), at
http://firstmonday.org/issues/issue3_3/raymond

20. Smolt. https://hosted.fedoraproject.org/projects/smolt
21. Socorro Crash Reporter. http://crash-stats.mozilla.com/
22. Twidale, M.B. & Nichols, D.M. (2005). Exploring

Usability Discussions in Open Source Development.
Proceedings, HICS’05, track 7, p.198c.

23. WebKit. http://developer.apple.com/opensource/
internet/webkit.html

24. Winschiers, H. and Paterson, B. 2004. Sustainable
software development. In Proceedings of the 2004
Annual Research Conference of the South African
institute of Computer Scientists and information
Technologists on IT Research in Developing Countries,
pp. 274-278.

