
Perceptions and Practices of Usability
in the Free/Open Source Software (FOSS) Community

Michael Terry, Matthew Kay, Ben Lafreniere
HCI Lab, David R. Cheriton School of Computer Science

University of Waterloo, Ontario, Canada
mterry@cs.uwaterloo.ca

0BABSTRACT
This paper presents results from a study examining percep-
tions and practices of usability in the free/open source soft-
ware (FOSS) community. 27 individuals associated with 11
different FOSS projects were interviewed to understand
how they think about, act on, and are motivated to address
usability issues. Our results indicate that FOSS project
members possess rather sophisticated notions of software
usability, which collectively mirror definitions commonly
found in HCI textbooks. Our study also uncovered a wide
range of practices that ultimately work to improve software
usability. Importantly, these activities are typically based on
close, direct interpersonal relationships between developers
and their core users, a group of users who closely follow
the project and provide high quality, respected feedback.
These relationships, along with positive feedback from
other users, generate social rewards that serve as the pri-
mary motivations for attending to usability issues on a day-
to-day basis. These findings suggest a need to reconceptual-
ize HCI methods to better fit this culture of practice and its
corresponding value system.

11BAuthor Keywords
Reference users, bleeding edge users, core users

12BACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Design

1BINTRODUCTION
In the past 10 years, free/open source software (FOSS) has
grown to be a vital component of the computing landscape:
It increasingly forms the cornerstone of IT infrastructure in
business, education, and government [23]; it powers com-
mercial products such as TiVo, Mac OS X, and netbooks;
and it has created a multi-billion dollar service industry for
companies like Red Hat, Novell, and IBM [22].

In recent years, the FOSS community has turned its atten-
tion to improving its usability practices [5,7,14,16,20,27].
Noting this trend, past research has identified some of the
challenges inherent in addressing usability in FOSS devel-
opment. For example, the distributed, largely voluntary
nature of FOSS development makes it difficult to engage in
holistic design methods since developers tend to work on
individual application components in isolation [3,5,16].

Despite these challenges, the FOSS community is gradually
adopting usability techniques that mesh with their devel-
opment practices. For example, Twidale and Nichols found
that some projects now engage in a practice they dub “de-
sign-by-blog” whereby prospective designs are posted on
personal blogs to solicit feedback from the software’s user
base [17].

Past work provides an important foundation for understand-
ing the challenges and practices associated with addressing
usability issues in FOSS development. However, much of
this research has been conducted at a distance, often by
examining bug reports and mailing list archives. As such,
there is little information about how members of this com-
munity actually perceive usability issues, or why they may
be motivated to address these issues in software develop-
ment. Furthermore, past research has examined only a

Figure 1. Strata of users for an open source project.
Reference users and bleeding edge users comprise the
project’s “core users” and play pivotal roles in FOSS
usability processes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

handful of projects. As open software development be-
comes an increasingly common way of producing software,
both the FOSS and HCI communities would benefit from a
deeper understanding of how FOSS project members think
about, act on, and are motivated by usability issues.

This paper presents results from a study investigating per-
ceptions and practices of usability in the FOSS community.
In total, 27 individuals associated with 11 different FOSS
projects were interviewed to understand how they concep-
tualize the notion of usability, how it is addressed in pro-
jects, and the motivations for doing so. Participants in-
cluded project members (developers, user experience (UX)
engineers, documentation writers, and localization contribu-
tors) and end-users closely connected to the project, a group
we call the project’s core users. As we will show, core us-
ers play a crucial role in FOSS usability.

Across the projects and participants, a number of common
themes arose.

First, counter to common perception, we found project
members possess rather sophisticated notions of the concept
of usability. In fact, taken collectively, their definitions of
usability closely match those of typical HCI textbooks.

Second, our interviews reveal a range of both ad-hoc and
structured practices that ultimately serve to improve the
software’s overall usability. While previous work has noted
a handful of emerging practices in this community, this
research provides a much more extensive view of current
FOSS usability practices, along with their salient features.
The most important of these practices are based on the rich
interactions between project members and their core users.
Core users include reference users, or users who are valued
for their domain expertise and their experience in using the
software; and bleeding edge users, or users who track and
use nightly builds of the software (Figure 1). Both user
groups provide high quality, respected feedback, which is
often explicitly solicited by developers as they design and
implement new functionality. The relationships that form
between the developers and their core users ultimately con-
tribute to an organic form of participatory design driven by
the real-time needs of both parties.

Finally, our results indicate that in the absence of economic
incentives, FOSS developers are motivated to address us-
ability concerns by the high quality, positive feedback they
receive from their core users and other trusted users. This
finding suggests one cannot assume that traditional motiva-
tions for HCI are sufficient, or even relevant, to compel
FOSS projects to address usability concerns. For example,
it is often assumed that the possibility of increasing the
software’s user base is sufficient to motivate FOSS devel-
opers to address usability issues (e.g., [1,16]). In fact, we
found that a large user base can actually act as a disincen-
tive since it increases the number of bug reports, feature
requests, and complaints. Instead, our study suggests that
the more important currency for motivating usability work

in the FOSS community is social rewards – praise and posi-
tive feedback from end-users whose opinions are valued.

Collectively, these results argue for the need to transform
HCI methods to better match this culture of practice and its
corresponding value system, as has been suggested in the
past [2,16]. Importantly, our work identifies one of the key
ways in which HCI methods need to change: In the absence
of economic incentives, HCI methods need to be reformu-
lated to foster and take advantage of the social relationships
that arise between FOSS developers and their end-users,
because it is these relationships that motivate attention to
usability issues in day-to-day development. Reframing HCI
as an activity that occurs within an open development envi-
ronment, in which developers and end-users have direct,
ongoing social relationships, reveals a large, unexplored
space for new HCI methods.

The rest of the paper examines these issues in greater detail,
beginning with a survey of related work, followed by a de-
scription of the study and its methods. We then relay the
results of the study by describing how respondents define
usability, how they discover and address usability issues,
and their motivations for doing so. We conclude with im-
plications for improving usability practices in the FOSS
community.

2BBACKGROUND
In this section, we provide a general overview of FOSS
development practices, then describe past work examining
usability issues in the FOSS community.

13BFOSS Development
FOSS is typically developed in a highly distributed fashion,
with tools such as mailing lists, IRC, source code reposito-
ries, and bug reporting systems used to support communica-
tion and synchronization of work practices [8,13,23]. Text
is the primary medium of communication as well as the
primary object of interest (more specifically, source code).

Project membership and organizational structures in FOSS
projects are typically based on merit [6,7,21], and contribu-
tors are often volunteers who choose tasks based on per-
sonal interests [13,29]. The volunteer nature of the commu-
nity has led to considerable research examining the motiva-
tions for contributing to FOSS projects. Among other rea-
sons, past work has found that project members contribute
to develop skills [19,24,29]; for the intellectual challenge of
the activity [23]; to build social capital and improve one’s
reputation [9,19,24]; and to be part of a community [18].

The underlying software architecture of FOSS projects
tends to be quite modular in nature, with developers over-
seeing all modifications to the modules they “own” [13,23].
This modularity helps in attracting new developers, since it
is easier to start making contributions to a small, independ-
ent portion of code than to a large, monolithic application
[4].

14BUsability in the FOSS Community
As the free/open source software community has grown its
user base beyond software developers, it has become in-
creasingly interested in creating well-designed, usable
software [5,7,16].

Early contributions to FOSS usability efforts were driven
by corporations such as Sun and Novell, who provided hu-
man interface guidelines (HIGs) [5] and results of usability
tests [7]. The resultant HIGs have proved to be extremely
useful, as they serve as an authoritative reference for some
matters of interface design [5,17].

While corporate contributions have played an important
role in jump-starting usability efforts in the FOSS commu-
nity, a number of challenges have been identified for more
fully incorporating usability methods and expertise in indi-
vidual projects. These challenges arise due to the way in
which FOSS is developed, as well as its developer-centric
culture, as we describe.

Free/open source software architectures are often highly
modular in design. However, usability concerns cut across
the entire application. As a consequence, it can be difficult
for individuals to make small, incremental improvements to
a software’s usability, a significant issue for software
largely developed by volunteers in their spare time [3,5,16].
Similarly, the lack of dedicated infrastructure for usability
activities and design artifacts makes it difficult to coordi-
nate usability work in distributed development environ-
ments [3,16]. Finally, since this merit-based culture has
traditionally valued source code as its primary currency, it
has sometimes been difficult for UX practitioners to join
and make contributions that are perceived as valuable
[3,16].

Despite these challenges, the community is gradually de-
veloping techniques to better address usability concerns.
One technique already mentioned is “design-by-blog,” in
which informal design critiques are held on personal blogs
[17]. Projects have also been found to use screenshots, an-
notated screenshots, and ASCII art to support design dis-
cussions by email and in bug trackers [28]. Finally, UX
experts are slowly being integrated into projects, and are
partially responsible for the emergent usability practices,
such as design-by-blog and the creation of dedicated usabil-
ity infrastructure (e.g., wikis, mailing lists) [3].

This prior research reveals the unique features and practices
of the FOSS community. However, past work examining
FOSS usability has considered only a handful of projects,
and has typically used only mailing list archives and bug
reports as its source material. To better understand how the
community thinks about and acts on usability, we inter-
viewed members of the FOSS community about these is-
sues. We describe this study next.

3BSTUDY DESCRIPTION
In this section, we describe the primary research questions
of the study, the study methods, and the study participants.

15BResearch Questions
In this research, we were interested in examining the fol-
lowing research questions:

• How do open source developers define and conceptualize
the notion of usability?

• What motivations do FOSS developers have for creating
software that is usable by people other than themselves?

• What are current usability practices in the FOSS commu-
nity?

• How do FOSS usability practices differ from traditional
usability practices?

Throughout this paper, we use the term “usability” as a ge-
neric term to encompass any and all human-centric con-
cerns in software design. We took a similar approach in our
interviews, as we describe below.

16BMethods
Three researchers conducted interviews at a FOSS confer-
ence, at a corporation that produces FOSS software, and
remotely via Skype.

Subjects were recruited at a FOSS conference and by di-
rectly contacting individual FOSS projects. Our primary
goal in recruiting was to interview a representative sample
of project members (developers, documentation writers,
localization contributors, etc.) across a range of projects
that varied in terms of the type of software produced, the
maturity of the project, and their organizational structure.
Since software usability necessarily involves users, we also
wished to understand FOSS users’ perspectives on these
matters. Thus, we interviewed users who interact regularly
with project members to understand their potential role in
influencing the usability of the FOSS applications they use,
as well as their thoughts on these issues.

Interviews typically lasted one hour. All interviews were
recorded, except for one interview in which the participant
did not provide consent for use of a recording device (notes
were taken by hand instead).

Each interview was divided into the following segments:

1. Obtaining basic background information on the partici-
pant, such as their day job and what FOSS project they
are associated with

2. Learning how and when they got involved with their
FOSS project. If they were a project member, we also
asked what they do in the project and why they stay in-
volved

3. Their perception of the concept of “usability”

4. How they practice or perceive others practicing usabil-
ity in the project

We used the term “usability” throughout the interview
without defining it. We chose the word because we felt it
was suitably generic that each participant could define it in
any way they wished. In fact, some objected to the term and
offered terms they felt were superior (such as “user experi-
ence”).

All three researchers analyzed the first ten interviews to
identify common themes. The primary researcher then ana-
lyzed all interviews. For each interview, a document was
created summarizing the participant’s responses to the seg-
ments of the interview. Individual quotes were extracted
from these summaries then clustered to identify common
themes using a bottom-up, inductive analysis approach.
Throughout the process, the emergent themes were regu-
larly validated by all three researchers in dedicated interpre-
tation sessions.

17BParticipants
We interviewed 12 developers, 5 user experience (UX) pro-
ject members, 5 non-code contributing project members
(documentation writers, localization contributors), and 5
core users. All individuals were members of their respective
software project’s project team, with the exception of the
core users.

As mentioned in the Introduction, we use the phrase “core
users” to refer to motivated users who closely follow and
interact with the project. This group of users includes refer-

ence users, or users with close social ties to individual pro-
ject members, with domain expertise and extensive experi-
ence using the software, and bleeding edge users, or users
who use nightly builds of the software. While past research
has identified numerous roles in FOSS development (such
as core members, peripheral developers, and bug reporters
[15]) and has also distinguished between active and passive
users (e.g., those who submit bug reports and feature re-
quests, and those who don’t) [10], we are unaware of prior
work that distinguishes users in these ways. These classifi-
cation schemes arose from our data and, as we will show,
describe groups of users who play a vital role in FOSS us-
ability practices.

Throughout the paper, we use the codes “D#”, “UX#”,
“NCC#”, and “CU#” (where # represents a unique number)
to refer to developers, user experience engineers, non-code
contributing project members, and core users, respectively.
We also use codes for each project.

A quick note is in order with respect to the presentation of
research results and our use of project codes in this paper.
FOSS projects are typically conducted “in the open” on the
Internet, with communications stored in easily searched,
publicly accessible archives. This openness makes it diffi-
cult to completely anonymize project descriptions. How-
ever, the contributions of this work lie in characterizing
trends and patterns within the FOSS community, rather than
in attributing specific behaviors to specific projects. Thus,
while we recognize that a determined individual may be

Project
Code

Project description Project organization Participants
interviewed

3DA A 3D animation package Largely volunteer-driven, with some project support provided by
an associated non-profit corporation

D9, NCC3, CU1

BG A bitmap graphics application Volunteer-driven D2, D3, D4, D8,
UX1, NCC1, NCC4

CMS A content management system
for the web

Largely volunteer-driven, with some project support provided by
an associated non-profit corporation

UX4

DTP Desktop publishing application Volunteer-driven D1, D5, NCC2, CU4

DUT A desktop utility Volunteer-driven D10

DWE A desktop windowing envi-
ronment

Volunteer-driven UX5

FE A font editor Volunteer-driven CU2, CU3

OS A desktop operating system Overseen by a commercial company, though the majority of con-
tributions are estimated to come from volunteers

D10, D11, UX3

VE A video editing application Was volunteer-driven, but now includes paid developers NCC5

VG A vector-based graphics appli-
cation

Volunteer-driven D7, CU5

WB A web browser Includes paid project members and a large volunteer developer
base. Overseen by a for-profit corporation

D6, D12, UX2

Table 1: Projects and project codes

able to surmise the true identity of some projects studied,
we still refer to each via a code.

Table 1 briefly summarizes each project, the basic type of
organizational structure, its project code, and the partici-
pants associated with the project. With this in place, we
now turn to the study results.

4BDEFINITIONS OF USABILITY
Table 2 presents participants’ definitions of usability, or-
dered according to the number of respondents mentioning a
particular concept. Participants were free to define the con-
cept in any way they pleased, so some participants cited
multiple concepts in their definitions. The number of re-
spondents for each concept is listed first in parentheses,
followed by the concept and a list of participants mention-
ing that concept.

As can be seen, the definitions of usability span the range of
definitions commonly found in the HCI textbooks, and
demonstrate that the community, as a whole, possesses a
fairly sophisticated, well-rounded notion of the concept.
(By way of comparison, Shneiderman et al.’s introductory
HCI textbook offers learnability, efficiency, error rates,
memorability, and subjective satisfaction as usability meas-
ures [25], most of which are either explicitly referenced or
alluded to by our participants.)

Learnability/discoverability was most frequently offered as
a component of usability, though many participants noted
that for high-end software, being learnable should not come
at the cost of power. This desire for power in FOSS applica-
tions has been previously noted [16], but in our study, par-
ticipants cited a concomitant need to provide power that can
be efficiently used.

A particularly common theme among the participants was
the notion that a usable interface exhibits some form of
logic in its design and use. This sentiment was echoed by
participants who mentioned “consistency,” for a total of 12
different respondents. This emphasis on a usable design
possessing an inherent logic was unexpected as it typically
receives only minor treatment in HCI texts (for example,
Shneiderman et al. devote only one page to “consistency”
in their text [25]). However, this emphasis may arise due to
a similar desire for clean, elegant, and logical code [12].

18BUsability and User Needs
Across the participants, only two explicitly introduced the
notion of user needs in their definitions of usability (UX2,
UX5). Both of these individuals have an educational back-
ground in human-centered computing. However, this obser-
vation should not be interpreted as other project members
being ambivalent to their software’s usability (there is am-
ple evidence that they are very concerned about its usabil-
ity). Instead, there appears to be less of a perceived need to
actively discover user needs. There are a number of poten-
tial explanations for this finding that can be drawn from our
interview data.

First, for mature projects, such as 3DA, BG, and VG, their
software already offers sophisticated functionality. For
them, the challenge is often providing this functionality in a
way that seamlessly integrates with users’ workflows.

Second, project members engage in an ongoing dialogue
with their core users about the software, its functionality,

Table 2: Definitions of Usability

(12) Learnability/discoverability. Features can be learned,
discovered (D1, D7, D9, D10, NCC2, NCC3, NCC4, NCC5,
UX5, CU1, CU3)

(10) Logical: Interface and interaction follow a certain logic, a
set of rules, and things work as expected (D1, D2, D6, D8,
NCC3, NCC4, UX2, CU1, CU2, CU3)

(8) Efficiency. Users can perform tasks efficiently. Often de-
scribed in context of high-end and/or professional users (D1,
D3, D9, D10, NCC3, NCC4, CU1, CU4)

(7) Simplicity. Interface design and presentation is simple.
This term mostly refers to a design aesthetic rather than the
application’s feature set (D4, D7, D9, D10, D11, NCC3,
NCC5)

(6) Transparency. The tool doesn’t get in the way of the user,
and fades into the background (D4, D8, D10, D12, UX2, UX3)

(6) Consistency. The design of interface and its behavior are
consistent (D1, D4, D11, NCC3, CU1, CU3)

(5) Intuitive. How one performs tasks matches one’s intuition
(D9, D11, NCC2, CU1, CU3)

(4) Easy-to-use. Software is easy-to-use (D3, D5, D9, CU3)

(3) Low floor, high ceiling. Simple things are easy, complex
things possible (D7, D8, CU1)

(2) Meshes with workflow (NCC3)

(2) The software is usable. (D7, CU2)

(2) Minimal cognitive load. Interface minimizes stress and
cognitive load on the user (D10, D12)

(2) Understanding user needs. Usability refers to “getting in
the user’s head space,” understanding their wants and expecta-
tions; understanding the target user group; and user-centered
design (UX2, UX5)

(2) Holistic quality. The interface, interaction, and visual de-
sign form a holistic unit (UX3, UX4)

(1) Memorability. Users can remember how to perform a task
(UX5)

(1) Easily accessible functionality, meaning functionality is
visible and how to use it is obvious to end-user (CU5)

(1) Real-world metaphors. The interface makes use of real-
world metaphors (NCC2)

(1) Less support. A usable interface results in fewer questions
on IRC or mailing lists (D1)

(1) Enables creativity (CU4)

(1) Term is inadequate; “user experience” is the more appro-
priate concept to consider (UX4)

how it is used, and how it should be improved. Similarly,
projects continually receive bug reports and feature requests
in mailing lists, IRC, and bug tracking databases. These
continual streams of user input likely lessen the perceived
need to actively discover user needs, especially since the
existing bugs and feature requests often outstrip a project’s
resources.

Finally, the limited attention paid to discovering user needs
may also be due to a lack of market pressures, coupled with
the volunteer nature of the projects. That is, projects are not
driven to compete in the marketplace in the same way
commercial products are. We examine this issue in greater
detail later when discussing motivations for usability.

From these conceptualizations of usability, we now turn to
the topic of usability practices.

USABILITY PRACTICES: DEVELOPER-USER
RELATIONSHIPS AND THE ROLES OF UX MEMBERS
With the exception of the dedicated UX project members,
few project members claimed to do much to discover or
address usability issues. However, we consistently found
project members report activities that directly or indirectly
contribute to the usability of the software. Table 3 summa-
rizes the methods we identified that contribute to software
usability.

As can be seen in the table, a wide range of practices were
uncovered, including those common to commercial soft-
ware development (such as the use of HIGs). Most notably,
a number of practices are the result of the highly accessible
nature of the project members. In particular, direct interac-
tions between developers and end-users lead to a number of
practices similar to participatory design. In this section, we
focus primarily on these direct interactions between devel-
opers and end-users, and discuss how project members
communicate with end-users about usability issues; how
they rely on reference users and bleeding edge users to test
developing versions of the software; and how Open Content
Projects (projects aimed at producing content using the
software) pair developers and core users on joint projects.
Finally, we consider current roles of UX members in FOSS
projects.

19BCommunicating with Users
By far, the most commonly cited means of discovering and
discussing usability issues was through the project’s com-
munication channels, specifically, IRC and mailing lists. In
these contexts, users engage in an ongoing, direct dialogue
with the developers about perceived issues and needs. IRC
is especially useful in this respect because of its real-time
nature, but mailing lists provide similar benefits. This form
of direct interaction between developers and users is natural
in the open development environment of the FOSS commu-
nity, and is an example of a practice without a strong ana-
logue in closed source development. Instead, in closed

source contexts, these types of direct interactions must be
explicitly staged.

25BGetting to the Heart of Usability Issues
In discussing usability issues with their users, project mem-
bers often cited the need to dig deeper to understand the
user’s true task. NCC2 describes this process of probing
user needs, and expresses the frustration that can come in
trying to help users:

Usually, the hardest part is teasing out, from the person who is
complaining, something about what they’re complaining about,
that you can understand. You get a lot of venting about some-
thing. You get people telling you that, “This program sucks. I’ve
tried to use DTP, and I’ve used InDesign, and InDesign is so
much better…” But that’s not helpful information. You’d like to
say, “Tell us what you’re trying to do”… It’s hard to get them
beyond “Well, I want to do this, and I want the computer when I
do this to do that…” It’s like, Well, let's step back a little bit and
say, “What is it you’re trying to accomplish in your layout to go
from this point to that point?” Forget about the operations –
they’re focused on the operations that they’ve commonly used
before – and it’s hard to get that out of people. Usually it takes a
lot of work, and I would say most of the time you fail trying to
get something you can understand, and if you can’t understand
it, it’s hard to address it.

This quote was representative of a number of project mem-
bers’ perspectives, and demonstrates an earnest desire to
help users. It also demonstrates recognition of the impor-
tance of clarifying users’ true tasks. Once those needs are
understood, projects often design to those needs in a way
that matches the overall interaction design of the applica-
tion, rather than blindly cloning a commercial application.
For example, D7 relayed a story about how a request for a
feature found in Adobe Illustrator was initially rejected by
one project member, but eventually implemented (in a form
suitable for VG’s design) after D7 talked with the user on
IRC to understand his task. This exchange and the initial
implementation of the new functionality occurred over the
course of a few days, and is illustrative of how end-users
directly engage developers in FOSS projects to negotiate
the addition or modification of functionality for their own
real-time needs.

20BReference Users, Bleeding Edge Users, and Graduated
Testing
A common perception of the FOSS community is that de-
velopers build software for themselves, to “scratch their
own itch” (e.g., [21,27]). However, in our study a number
of developers reported that they do not regularly use the
software they produce, and often lack relevant domain ex-
pertise. D8 illustrates this finding:

One of the problems is that we don't really use our own pro-
gram. We’re working on the program because it's an interesting
challenge to design an image manipulation application, but we
don't usually do a lot of graphics. This is a problem because we
just implement something, test it, then maybe never use it again.
There is this detach between people using BG daily and us.

For these reasons and others, the project members often rely
on core users to engage in a process we call graduated test-
ing. In this process, new designs are incrementally evalu-
ated by increasingly larger groups of users. First, reference
users and bleeding edge users test development versions of
the software. Then, a larger group of users use the software
and provide feedback when it is released as a stable version.
Finally, the last significant group of users is reached when
the software is included in Linux distributions (Figure 1).
While this last user group (those who only use software
provided in their Linux distribution) may not be the largest,
it is the last set of users to receive the latest version of soft-
ware. However, by the time stable release users and Linux
distribution users receive the software, it has undergone
many rounds of tests.

D8 describes the early stages of this testing process:

The first thing is, of course, testing it yourself, because you’re
just, right now, playing with the code, and of course, you want to

figure out, does it feel right for you, because if it doesn’t feel
right for you, it doesn’t make sense to put it on others. Then I
would check it in, and I had some people who were kind of our
reference users, who we could ask, “What do you think about
this?” …They might give feedback [like], I don’t care if it’s this
way or that way, but also [feedback on how to improve the de-
sign]. [These reference users] were two people who are also
connected with BG for quite a long time. We met each other fre-
quently at BG conferences, so there was a certain trust. They
also had a reputation for creating graphics for the GNOME pro-
ject, and obviously for the BG user interface… So basically, they
were very close to the project, so “reference artists” was kind of
the internal designation.

This process of explicitly soliciting feedback from users
close to the project also came up in discussions with mem-
bers of the 3DA, DTP, DTU, FE, VG, and WB projects. As
such, this practice constitutes one of the more important
methods we found for discovering and addressing usability
issues in FOSS development. It also illustrates another ex-
ample of the ways in which developers and end-users di-

Methods for Discovering Usability Issues Methods for Addressing Usability Issues

⋅ By paying attention to what is asked, discussed, or requested in
internet relay chat (IRC), mailing lists, and forums (all pro-
jects)

⋅ Through bug reports (all projects)

⋅ By discovering what doesn’t work for them as they develop the
software (all projects)

⋅ Via “reference users”, “bleeding edge” users of nightly builds,
and professional users (3DA, BG, DTP, DTU, FE, VG, WB)

⋅ Through informal observations of friends and family; observa-
tions of conference attendees using software at project booths;
or watching talks at conferences where high-end users give
demos of workflows (BG, DTU, VG, WB)

⋅ By finding inconsistencies in the “rules” of the interface or
one’s expectations (3DA, BG, DTU)

⋅ By conducting think-aloud studies (DTU, OS, WB)

⋅ By performing usability studies in controlled settings (CMS,
DWE, OS)

⋅ By writing a manual, documentation, or a book and relaying
discovered issues, or by viewing how long it takes to explain
concepts in documentation written by others (3DA, DTP)

⋅ By giving tutorials on the software or getting reports of diffi-
culties others encountered when teaching the software in
classes (BG, DTP)

⋅ Via expert reviews, performed remotely by UX members
(DWE, VE)

⋅ Through Open Content projects (3DA)

⋅ Interviews of users (DWE)

⋅ Through surveys of user base (WB)

⋅ Directed program asking for users to identify small usability
problems that can be quickly fixed (OS)

⋅ Discussions on IRC and mailing lists (all projects)

⋅ Seeking feedback on mock-ups, prototypes, and custom builds
from others (including reference users and bleeding edge users)
(3DA, BG, CMS, DTP, DTU, OS, VE, WB)

⋅ Drawing up specifications, setting milestones, or articulating
visions (3DA, BG, OS, VG, WB)

⋅ Via dedicated UX people (BG, CMS, DWE, OS, WB)

⋅ Use of Human Interface Guidelines (HIGs) (BG, DWE, OS, VE)

⋅ Annual, monthly, weekly, or ad hoc meetings, either in person
or on IRC (3DA, BG, DWE, OS)

⋅ Defining a target user group (3DA, BG, DTP, VG)

⋅ Through usability “champions” in the project (3DA, VG)

⋅ Reliance on the larger community of users to fill in gaps in
expertise and/or lack of equipment (3DA, DTP)

⋅ Creating personas of users (OS, WB)

⋅ Blogging about designs, getting feedback from user base (OS,
WB)

⋅ Participation in the Season of Usability (DWE, OS)

⋅ By fixing things with solutions that are “logically” better (VG)

⋅ Creating scenarios of use to guide design (BG)

⋅ Running design clinics at conferences (OS)

⋅ Open Content Projects (3DA)

⋅ By developing and applying UI design patterns (DWE)

⋅ Interface brainstorming wiki (BG)

Table 3: Methods for Discovering and Addressing Usability Concerns

rectly interact with one another through software develop-
ment.

One of the chief advantages of working closely with refer-
ence users and bleeding edge users is that developers obtain
high quality, targeted feedback from a relatively small set
of trusted, knowledgeable users early on, before the features
become part of the official, stable version of the software.
Accordingly, major usability issues can be detected and
corrected before the software reaches a large audience.
These pre-existing relationships also lessen the need to es-
tablish shared context or goals, increasing the quality of the
communications.

One side-effect of this practice is that it can potentially lead
to software tuned to the needs of users close to the project,
rather than the larger user base, an issue that has been noted
in the past [5]. This possibility echoes findings of Mockus
et al., who found that the Apache project pays the most
attention to problems reported on the mailing list since
those reporting issues are likely to be part of the developer
community and thus able to provide “sufficient information
to analyze the problem” [13].

22BOpen Content Projects
While we found many projects engage in similar, ad-hoc
practices, the 3DA project had one highly effective, unique
approach for joining developers and users together to im-
prove the software. Specifically, the 3DA project regularly
coordinates Open Content Projects, projects that set a goal
of producing a significant creative product (such as a short
film or a game) using the software. These projects are
funded through donations, grants, and pre-orders of the
content being produced (such as DVDs), with the funds
used to support developers and artists working together in a
collocated space to produce the final product. (Note that
these projects should not be confused with the movement of
the same name that became the Creative Commons Pro-
ject).

Open Content Projects provide a strong forcing function for
addressing and improving software usability because the
artists and developers are mutually dependent on one an-
other to achieve the shared goal. These projects also serve
as a significant morale booster for the entire community by
giving them a clear, well-defined target, and a finished
product that can be shown to, and appreciated by, the gen-
eral public. A number of notable short films and games
have already been produced by this model, with the soft-
ware benefiting greatly in the process. While the 3DA pro-
ject is the only project we are aware of that has such a proc-
ess, it nonetheless provides a compelling model of how
FOSS projects can be driven by real-world user needs in the
absence of economic incentives.

21BDedicated Usability / UX People
While the practices already mentioned involve developers
and users, a number of projects we interviewed also had
dedicated UX contributors. UX engineers and designers can

sometimes face obstacles to joining a FOSS project [3,16].
However, in our study, we found that they are generally
quite appreciated after they integrate with the project, as D4
indicates:

I’m quite happy and content to be the low-level developer, who
says, “These things will be possible… [but] there are going to
be hard, difficult interaction issues to tackle here.” I’m quite
happy for others to ponder those problems… I’m glad people
are looking into improving [the user interface].

After joining a project, the UX contributors often stated that
they spend a significant amount of time simply educating
project members about how to think about and practice us-
ability/UX on a day-to-day basis. UX3 touches on this sub-
ject as she describes her goals in running design clinics at
her project’s primary conference:

I’d like those guys that I met at [our project conference this
year], when they start their project and they think about adding
15 features to an application… [I’d like to think] that I have
given them something that makes them stop for a moment and
think, “Should I be adding this feature? Is it right for the prod-
uct that I want it to sit in?”

The UX members of FOSS projects, especially larger pro-
jects, echoed this basic sentiment: Their current goals are to
make themselves known in the project’s community, to
make it clear how they can help the project, to educate pro-
ject members about usability issues, and, finally, to provide
usability feedback on the software. As an example, UX5
holds monthly meetings where she makes herself available
to provide expert reviews on existing applications or pro-
posed designs. Not only do these meetings provide immedi-
ate benefit to the developers, they also help remind devel-
opers that there is a need to consider usability in their day-
to-day work.

From this survey of methods for discovering and addressing
usability issues, we now turn to motivations for attending to
these issues.

7BMOTIVATIONS FOR USABILITY
As we have mentioned, an oft-repeated maxim is that FOSS
developers develop software to “scratch an itch” [21].
However, our study strongly suggests that while contribu-
tors may get started by scratching an itch, these “itches”
quickly run out. Instead, our study indicates that social rela-
tionships, social rewards, and subtle social pressures are
some of the most important forces to keep people involved
in a project. These social factors also play a critical role in
motivating individuals to address usability issues, as we
describe next.

As an example of the strong social relationships that can
form in these projects, NCC2 describes the friendship that
has grown between himself and another project member as
they wrote a manual for the DTP project:

You develop that sense of closeness. I mean, I feel like he’s one
of my best friends really, that I’ve ever had in my life. Which
seems odd, because he’s over there in Germany, and I’m over

here in North America, and we’ve never met, and before a cou-
ple of years ago, I had no idea who he was.

These social relationships create an important glue for
keeping a project together, as UX5 indicates when she de-
scribes why she continues working with the project:

‘Cause I think it’s important. DWE has a really great commu-
nity once you actually get through the door. And I feel like I
would be leaving, letting a lot of people down if I just disap-
peared, because there isn’t anyone else to do this.

Not only do the social relationships keep people involved in
a project, they also serve as one of the primary motivators
for addressing usability issues on a day-to-day basis, as D8
describes:

I guess the reward for us is mostly getting more good input or
feedback about BG. It is way more rewarding to have some guy
like our reference artists, who are using your program on a
regular basis, and do immediately give feedback… instead of
having 10 people on the mailing list complaining that BG is not
like Photoshop. In that sense, one person using BG is more valu-
able than 10 people using BG.

As D8 indicates, rich, high quality positive feedback from
respected users is a potent reward for good design. D10
reinforces this point when describing why he would ask
people in a university library for feedback on his software,
which now has an installed user base of approximately 4
million people:

I just wanted evidence. I wanted to gather evidence that my pro-
gram was usable. I had become so familiar with it, that I just
wanted to know what it was like for other people to use it for the
first time; what that first experience was like for your average
person. Also, I just wanted praise. I wanted to show something
that I accomplished to other people and have them acknowledge
it.

Together, the points made by D8 and D10 summarize our
findings on what motivates FOSS project members to at-
tend to usability issues: After a certain point, the size of the
user base is simply a number that serves as only a marginal
reward; the true reward for developing well designed soft-
ware in the FOSS community is praise and positive feed-
back from the user community. In an analysis of the discus-
sion forum for an open source project, Iivari found users
often thank and praise the developers for their efforts [11];
our data suggests that such praise can have important ef-
fects on usability. This finding stands in contrast to com-
mon assumptions that increasing the user base is a compel-
ling motivator for addressing usability issues in FOSS de-
velopment [1,16]. This result also has important implica-
tions for the design of HCI methods for this community, as
we describe next.

IMPLICATIONS FOR FOSS USABILITY
Given the growing prominence of open software develop-
ment, it is natural to ask how one can improve usability
practices in this culture. Collectively, the results of our
study, along with past research, indicate that the FOSS

community possesses a culture of practice and value system
quite distinct from that in which the field of HCI has devel-
oped. In particular, the close social relationships we found
between developers and users are uncommon in closed soft-
ware development, and do not naturally arise as they do in
the FOSS community. Thus, in considering how usability
practices can be improved in this culture, it is necessary to
not only consider how they may be improved from within
the community, but also how existing HCI methods and
practices can change to better match this culture of practice.
In this section, we consider both perspectives.

23BImproving Practices from within the FOSS Community
Our study indicates that the FOSS community, as a whole,
already engages in a number of practices conducive to cre-
ating usable software. However, apart from Human Inter-
face Guidelines (HIGs), there is little collective awareness
of all the ways the various projects address usability. Simi-
larly, project members often discount their own ad-hoc
practices and don’t recognize the value they provide in cre-
ating usable software.

Given this general lack of awareness, one of the most im-
mediate ways the FOSS community can improve its prac-
tices is simply for it to be more aware of what others are
already doing to improve software usability. One way to
accomplish this goal is to create a catalogue of the tech-
niques that help improve usability, along with instructions
on how to get the most benefit from them. This approach
has the advantage of conferring a degree of authenticity and
legitimacy to the techniques, since they are derived from
the community itself. As an example, the Open Content
Projects have proven highly effective and could be emu-
lated by other projects. Making this basic approach more
widely known could spur other projects to adopt similar
types of practices.

24BReconceptualizing HCI for FOSS Development
Past research has noted that the openness of the FOSS
community creates opportunities for the larger user base to
participate in usability processes [2,16]. For example, one
approach that has been suggested is to provide facilities that
enable users to easily report usability issues as the software
is used [16]. However, we note that any such approach must
scale elegantly with the size of the user base, to avoid add-
ing significant burdens to project members. Keeping this
constraint in mind, the results of this study suggest that one
promising avenue is to develop different tools for the dif-
ferent classes of users, where these tools align with the
roles these users already play in FOSS usability. For exam-
ple, one could imagine providing a rich set of feedback
tools such as screen capture and annotation facilities, but
only in versions used by core users (such as development
branches). Doing so would enable these users to more ef-
fectively communicate usability issues during development,
while avoiding the problem of information overload that
could result if these capabilities were included in the offi-
cial release. To address the problem of the representative-

ness of core users, data could still be collected from the
larger user base, but in forms that are more amenable to
automated summarization. For example, applications could
be instrumented to collect usage data, as has been done with
GIMP [26].

9BCONCLUSION
The results of this research challenge common conceptions
of how the FOSS community perceives, acts on, and is mo-
tivated by usability. Most importantly, our research stresses
the importance of the direct social relationships between
developers and users in addressing usability issues on a
day-to-day basis. These findings argue for the need to re-
search new HCI methods that operate in the culture and
value system of the FOSS community.

10BREFERENCES
1. Bach, P.M. Design information sharing across multiple knowl-

edge systems in a FLOSS community. Proceedings of iCon-
ference '09, (2009).

2. Bach, P.M., DeLine, R., and Carroll, J.M. Designers wanted:
participation and the user experience in open source software
development. In Proceedings of CHI '09, ACM (2009), 985–
994.

3. Bach, P.M. and Carroll, J.M. FLOSS UX Design: An Analysis
of User Experience Design in Firefox and OpenOffice.org. In
Open Source Ecosystems: Diverse Communities Interacting.
2009, 237-250.

4. Baldwin, C. and Clark, K. The Architecture of Participation:
Does Code Architecture Mitigate Free Riding in the Open
Source Development Model? Manage. Sci. 52, 7 (2006), 1127,
1116.

5. Benson, C., Muller-Prove, M., and Mzourek, J. Professional
usability in open source projects: GNOME, OpenOffice.org,
NetBeans. In CHI '04 Extended Abstracts, ACM (2004),
1083–1084.

6. Fielding, R.T. Shared leadership in the Apache project. Com-
mun. ACM 42, 4 (1999), 42–43.

7. Frishberg, N., Dirks, A.M., Benson, C., Nickell, S., and Smith,
S. Getting to know you: open source development meets us-
ability. In CHI '02 Extended Abstracts, ACM (2002), 932–933.

8. Gutwin, C., Penner, R., and Schneider, K. Group awareness in
distributed software development. In Proceedings of CSCW
'04, ACM (2004), 72–81.

9. Hars, A. and Ou, S. Working for Free? Motivations for Par-
ticipating in Open-Source Projects. Int. J. Electron. Commerce
6, 3 (2002), 25–39.

10. Hedberg, H. and Iivari, N. Integrating HCI Specialists into
Open Source Software Development Projects. OSS, (2009),
251-263.

11. Iivari, N. "Constructing the users" in open source software
development: An interpretive case study of user participation.
Information Technology & People 22, 2 (2009), 132-156.

12. Lakhani, K.R. and Wolf, R.G. Why Hackers Do What They
Do: Understanding Motivation and Effort in Free/Open Source
Software Projects. In J. Feller, B. Fitzgerald, S. Hissam and

 K.R. Lakhani, eds., Perspectives on Free and Open Source
Software. MIT Press, 2005.

13. Mockus, A., Fielding, R.T., and Herbsleb, J. A case study of
open source software development: the Apache server. In Pro-
ceedings of ICSE '00, ACM (2000), 263–272.

14. Müller-Prove, M. Community experience at OpenOffice.org.
interactions 14, 6 (2007), 47–48.

15. Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and
Ye, Y. Evolution patterns of open-source software systems and
communities. In Proceedings of IWPSE '02, ACM (2002), 76–
85.

16. Nichols, D.M. and Twidale, M.B. The usability of open source
software. First Monday 8, 1 (2003).

17. Nichols, D.M. and Twidale, M.B. Usability processes in open
source projects. Software Process: Improvement and Practice
11, 2 (2006), 162, 149.

18. Oram, A. Why Do People Write Free Documentation? Results
of a Survey - O'Reilly Media.
http://onlamp.com/pub/a/onlamp/2007/06/14/why-do-people-
write-free-documentation-results-of-a-survey.html?page=1.

19. Oreg, S. and Nov, O. Exploring motivations for contributing to
open source initiatives: The roles of contribution context and
personal values. Comput. Hum. Behav. 24, 5 (2008), 2055–
2073.

20. Raymond, E.S. The Luxury of Ignorance: An Open-Source
Horror Story. http://www.catb.org/~esr/writings/cups-
horror.html.

21. Raymond, E.S. Cathedral & the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary. O'Reilly &
Associates, Inc., Sebastopol, CA, USA, 2001.

22. Rooney, P. IBM Builds Dedicated Sales Channel For Red Hat,
Novell Linux. 2005. http://www.crn.com/software/175002626.

23. Scacchi, W. Free/open source software development: recent
research results and emerging opportunities. In ESEC-FSE
Companion '07, ACM (2007), 459–468.

24. Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., and Lakhani,
K. Understanding Free/Open Source Software Development
Processes. Software Process: Improvement and Practice 11, 2
(2006), 95-105.

25. Shneiderman, B., Plaisant, C., Cohen, M., and Jacobs, S. De-
signing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison Wesley, 2009.

26. Terry, M., Kay, M., Van Vugt, B., Slack, B., and Park, T.
Ingimp: introducing instrumentation to an end-user open
source application. In Proceedings of CHI '08, ACM (2008),
607–616.

27. Thomas, M.P. Why Free Software has poor usability, and how
to improve it. http://mpt.net.nz/
archive/2008/08/01/free-software-usability.

28. Twidale, M.B. and Nichols, D.M. Exploring Usability Discus-
sions in Open Source Development. Hawaii International
Conference on System Sciences, IEEE Computer Society
(2005), 198c.

29. Ye, Y. and Kishida, K. Toward an understanding of the moti-
vation Open Source Software developers. In Proceedings of
ICSE '03, IEEE Computer Society (2003), 419–429.

