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Today

This morning
Introduce basics of visualization design
Do some design / sketching

This afternoon
Special topics (Uncertainty?)
More design / sketching



Interrupt me!



Introduce yourselves

Research area, interest in vis, ...



Why visualize in scientific communication?



Anscombe’s quartet

4 datasets, same means, variances, correlation

I		  II		  III		   IV

x	  y	 x	 y	 x	 y	  x	 y

10.0	  8.04	 10.0	 9.14	 10.0	 7.46	  8.0	  6.58

 8.0	  6.95	  8.0	 8.14	  8.0	 6.77	  8.0	  5.76

13.0	  7.58	 13.0	 8.74	 13.0	 12.74	  8.0	  7.71

 9.0	  8.81	  9.0	 8.77	  9.0	 7.11	  8.0	  8.84

11.0	  8.33	 11.0	 9.26	 11.0	 7.81	  8.0	  8.47

14.0	  9.96	 14.0	 8.10	 14.0	 8.84	  8.0	  7.04

 6.0	  7.24	  6.0	 6.13	  6.0	 6.08	  8.0	  5.25

 4.0	  4.26	  4.0	 3.10	  4.0	 5.39	 19.0	 12.50

12.0	 10.84	 12.0	 9.13	 12.0	 8.15	  8.0	  5.56

 7.0	  4.82	  7.0	 7.26	  7.0	 6.42	  8.0	  7.91

 5.0	  5.68	  5.0	 4.74	  5.0	 5.73	  8.0	  6.89



Anscombe’s quartet



Visualize to see patterns you wouldn’t otherwise



Visualize to see patterns you wouldn’t otherwise







Text to table



Text to table to graph

[Jonathan P Kastellec and Eduardo L Leoni. 2007. Using Graphs Instead 
of Tables in Political Science. Perspectives on politics 5, 4: 755–771]



Text to table to graph

[Jonathan P Kastellec and Eduardo L Leoni. 2007. Using Graphs Instead 
of Tables in Political Science. Perspectives on politics 5, 4: 755–771]



Visualize for persuasion

[https://www.bloomberg.com/graphics/2015-whats-warming-the-world/]

https://www.bloomberg.com/graphics/2015-whats-warming-the-world/


Evolution of bacteria

https://vimeo.com/180908160

https://vimeo.com/180908160


How do we turn data into visualizations?



Grammar of graphics
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Grammar of graphics



Let’s systematize “turning data into a vis”

data -> ??? -> marks on the screen (or paper)



Let’s systematize “turning data into a vis”

data -> ??? -> marks on the screen (or paper)

???	 = some vis API
		  = some way of thinking about vis systematically



Let’s systematize “turning data into a vis”
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???	 =	New function for every chart type:
			   scatter_plot(data, ...)
			   bar_chart(data, ...)
			   ...



Let’s systematize “turning data into a vis”

data -> ??? -> marks on the screen (or paper)

???	 =	New function for every chart type:
			   scatter_plot(data, ...)
			   bar_chart(data, ...)
			   ...
			   Every new chart is a new adventure!
			   Too many specs! — Too high level!



Let’s systematize “turning data into a vis”

data -> ??? -> marks on the screen (or paper)

???	 =	New function for every chart type
		  =	Low-level drawing functions
			   draw_point(...)
			   draw_rectangle(...)
	



Let’s systematize “turning data into a vis”

data -> ??? -> marks on the screen (or paper)

???	 =	New function for every chart type
		  =	Low-level drawing functions
			   draw_point(...)
			   draw_rectangle(...)
	
			   Too low level!



Let’s systematize “turning data into a vis”

data -> ??? -> marks on the screen (or paper)

???	 =	New function for every chart type
		  =	Low-level drawing functions
		  =	Grammar of graphics
	
			   Encode data with visual channels
			   Display encodings with marks



Visual channels
(ggplot “aesthetics”)



Visual channels ------->
(ggplot “aesthetics”)	

Marks
(ggplot “geometries”)

Points

Lines

Bars

etc



Grammar of graphics

Codifies data types, encodings/channels, marks

Maps data -> channels -> marks

Makes visualization specification straightforward

Undergirds ggplot, Tableau, Vega-Lite, Altair,... 
(terms may vary)



Grammar of graphics



Grammar of graphics
(data types, channels, marks)



Grammar of graphics
(data types, channels, marks)

mpg: 		  numeric
wt: 			  numeric



Grammar of graphics
(data types, channels, marks)

mpg: 		  numeric
wt: 			  numeric
wt 			   -> x position
mpg 		  -> y position
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Grammar of graphics
(data types, channels, marks)
mpg: 		  numeric
wt: 			  numeric
manual:	 nominal
wt 			   -> x position
mpg 		  -> y position

mark: 		 point



Grammar of graphics
(data types, channels, marks)
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Grammar of graphics
(data types, channels, marks)
mpg: 		  numeric
wt: 			  numeric
manual:	 nominal
wt 			   -> x position
mpg 		  -> y position
manual	 -> shape
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Grammar of graphics
(data types, channels, marks)
mpg: 		  numeric
wt: 			  numeric
manual:	 nominal
wt 			   -> x position
mpg 		  -> y position
manual	 -> color
manual	 -> shape
mark: 		 point



Grammar of graphics
(data types, channels, marks)
mpg: 		  numeric
wt: 			  numeric
manual:	 nominal
wt 			   -> x position
mpg 		  -> y position
manual	 -> color

mark: 		 point



Why is the grammar of graphics useful?

1. Easier to specify many charts, combinations

2. Helps you design/evaluate charts systematically



1. Easier to specify many charts, combinations

mpg: 		  numeric
wt: 			  numeric

wt 			   -> x position
mpg 		  -> y position

mark: 		 point



1. Easier to specify many charts, combinations

Not:

some_big_function_to_make_scatterplots(
	 my_data, 
	 a_bunch_of_options
)



1. Easier to specify many charts, combinations

Not:

some_function_to_draw_grid()
some_function_to_draw_axes()
for (row in data) {
	 draw_point(data[i]["x"], ...)
}
 ...



1. Easier to specify many charts, combinations
e.g., in ggplot
(data, channels, marks):

ggplot(mtcars, aes(
    x = wt,
    y = mpg
  )) +
  geom_point()



2. Helps you design charts systematically

Data			   channels		  	   marks			   viewer

																	                 viewer’s 
																	                 reconstruction
																                 	 of the data
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2. Helps you design charts systematically

Data			   channels		  	   marks			   viewer

																	                 viewer’s 
																	                 reconstruction
																                 	 of the data

How well do these match, given the channel used?



2. Helps you design charts systematically

E.g.,

How accurately do people
perceive position?

How accurately do people
perceive area?

Channels



2. Helps you design charts systematically

E.g.,

How accurately do people
perceive position for 
quantitative data?
...for ordered data?
...for nominal data?
etc.

Channels



2. Helps you design charts systematically

E.g.,

What channel is best for 
quantitative data?
...for ordered data?
...for nominal data?
etc.

Channels



Encodings help us judge chart effectiveness

E.g.,

What channel is best for 
quantitative data?
...for ordered data?
...for nominal data?
etc.



Encodings help us judge chart effectiveness



Encodings help us judge chart effectiveness



How good is a visual channel / encoding?

Length encoding:



How good is a visual channel / encoding?

Length encoding:



How good is a visual channel / encoding?

Length encoding:

Area encoding:



How good is a visual channel / encoding?

Length encoding:

Area encoding:



Pick one, cross it off...



Pick one, cross it off...



Effectiveness

This chart works because it 
uses accurate channels (ones 
with low estimation error).

This is an important (but 
not the only!) aspect of 
effectiveness.



What about this?



What about this?



Other insights from perception



Reference lines can help...

0 100



Reference lines can help...

0 10050



Reference lines can help...

0 100755025



Reference lines can help...

0 100908070605040302010



Reference lines can help...

0 10090 9580 8570 7560 6550 5540 4530 3520 2510 155



Reference lines can help...

0 10090 9580 8570 7560 65

64.5

50 5540 4530 3520 2510 155



Reference lines

Induce bias...

...but can be used to 
decrease error



Popout and preattentiveness

https://www.csc2.ncsu.edu/faculty/healey/PP/

https://www.csc2.ncsu.edu/faculty/healey/PP/


Popout and preattentiveness

Preattentiveness
 -> popout
 -> layering
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What can people see 
separately?10

15

20

25

30

35

2 3 4 5

Weight (1000 lbs)

Fu
el

 e
ffi

ci
en

cy
 (m

pg
)

Cylinders
4

6

8



Popout and preattentiveness

Preattentiveness
 -> popout
 -> layering

What do people see first? 

What can people see 
separately?10

15

20

25

30

35

2 3 4 5

Weight (1000 lbs)

Fu
el

 e
ffi

ci
en

cy
 (m

pg
)

Cylinders
4

6

8



Popout and preattentiveness

Preattentiveness
 -> popout
 -> layering
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Color



Sequential / diverging data

[http://www.research.ibm.com/people/l/lloydt/color/color.HTM]



Sequential / diverging data

[http://www.research.ibm.com/people/l/lloydt/color/color.HTM]



Sequential / diverging scales

Ordered / quantitative data may  
be sequential or diverging

This impacts encoding choice, for example:

Sequential color scale:	 

Diverging color scale:	  



Prefer perceptually uniform colormaps

[Bernice E Rogowitz and 
Lloyd A Treinish. 1993. 
Why Should Engineers 
and Scientists Be Worried 
About Color? IBM Thomas 
J. Watson Research Center. 
Retrieved May 11, 2013 
from http://www.research.
ibm.com/people/l/lloydt/
color/color.HTM]



For continuous color maps, Viridis (and co)...

[http://bids.github.io/
colormap]

http://bids.github.io/colormap


For discrete colormaps, Color Brewer...

[http://colorbrewer2.org]

http://colorbrewer2.org


For more, hclwizard / colorspace R package

[http://hclwizard.org/]

http://hclwizard.org/


Grammar of graphics + Perception
helps us design more effective charts



Grammar of Graphics + Perception

Think in data types, channels, and marks.

Helps you specify and design charts using 
perceptually effective channels.

Consider sequential / diverging nature of data.



Questions so far?



Design guidelines



Some rough design guidelines*

1.	Match effectiveness with importance
2.	Avoid ambiguity
3.	Locality is king / eyes beat memory
4.	Establish viewing order
5.	Layer, layer, layer
6.	When in doubt, grid
7.	Treat visual attributes like adjectives
     *	 These guidelines are drawn largely from my experience + personal preferences + the literature. 
	 Design is messy, these are not perfect, others will disagree with me, etc. Caveat emptor.



1. Match effectiveness with importance



2. Avoid ambiguity

Does the 3D mean anything here?

(Hint: No)



2. Avoid ambiguity

Marks should not have multiple 
reasonable interpretations

If it looks like it could come from data,
it should come from data



3. Locality is king / eyes beat memory

No:
Thing

Yes:
Thing

Information I need
to understand thing

Information I need
to understand thing



No
JN

D



Yes
JN

D
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1. The �nal Bayesian censored log-linear
model gives us a posterior probability
distribution over the mean log(JND)
for each value of r.

2. We rank and group visualizations based 
on how precise people’s estimations of 
correlations are with them (lower 
expected JND implies higher precision)

3. We estimate the ratio of average
JNDs between successive groups 
over all values of r from 0.3 to 0.8.

The high precision
group is between 
~1.5 and 2 times
more precise than 
the medium
precision group.

The low precision
group is between 
~1.5 and 3 times
more precise than 
the chance group.
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1× 20.5× 2× 21.5×

The left panel shows the Bayesian censored log-linear model, which gives us a posterior probability distribution over the mean 
log(JND) for each value of r. In the center panel we rank and group visualizations based on how precise estimations of correlations are 
with them (lower expected JND implies higher precision). In the right panel we estimate the ratio of average JNDs between succesive 
groups over all values of r from 0.3 to 0.8. The low precision group is between ~1.5 and 3 times more precise than the chance group. 
The high precision group is between ~1.5 and 2 times more precise than the medium precision group.
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Count lookups!



Interaction effects on linear in log odds slopes
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4 RESULTS

4.1 Probability of Superiority Judgments
For each uncertainty visualization, adding means at low variance 
decreases LLO slopes. Recall that a slope of one corresponds to no 
bias, and a slope less than one indicates underestimation. When we 
average over uncertainty visualizations, adding means at low 
variance reduces LLO slopes for the average user, indicating a very 
small 0.8 percentage points increase in probability estimation error.

At high variance, the effect of adding means changes directions 
for different uncertainty visualizations. Adding means decreases 
LLO slopes for HOPs, whereas adding means increases LLO slopes 
for intervals and densities. Because differences in LLO slopes 
represent changes in the exponent of a power law relationship, these 
slope differences of similar magnitude indicate a very small increase 
in probability of superiority estimation error of 0.3 percentage points 
for HOPs and small reductions in error of about 1.5 and 1.0 percent-
age points for intervals and densities, respectively.

Users of all uncertainty visualizations underestimate effect size. 
When we average over variance, users show an average estimation 
error of 8.6, 14.0, 14.8, and 12.4 percentage points in probability of 
superiority units for quantile dotplots, HOPs, intervals, and densities, 
respectively, each without means. In this marginalization, adding 
means only has a reliable impact on LLO slopes for HOPs, but the 
difference is practically negligible.

4.2 Intervention Decisions
4.2.1 Points of Subjective Equality
For each uncertainty visualization, adding means at low variance 
increases PSEs. This results in different effects depending on whether 
the visualization with no means has a PSE below or above utility-op-
timal. Recall that a PSE of zero is utility-optimal, a negative PSE 
indicates intervening too often, and a positive PSE indicates not 
intervening often enough. Users of quantile dotplots with no means 
have negative PSEs which become unbiased when we add means. 
Users of HOPs and intervals with no means have positive PSEs,  
biases which increase when we add means. Users of densities with 
no means have PSEs near zero and become more biased when we 
add means. Only the effect for quantile dotplots is reliable. When we 
average over uncertainty visualizations, at low variance the 
average user may have a PSE 0.6 percentage points above utility-opti-
mal with no means, and adding means increases this mild bias by 
about 1.7 percentage points in terms of the probability of winning.

At high variance, adding means decreases PSEs. Since PSEs for 
all uncertainty visualizations with no means are below optimal, 
adding means increases biases in all conditions, however, the effect 
is only reliable for intervals. When we average over uncertainty 
visualizations, at high variance the average user has a negative PSE 
9.5 percentage points below utility-optimal with no means, and 
adding means increases this bias by about 2.1 percentage points.

4.2.2 Just-Noticeable Differences
At low and high variance, the effects of adding means on JNDs are 
mostly unreliable. Recall that smaller JNDs indicate that a user is 
sensitive to smaller differences in effect size for the purpose of 
decision-making. Adding means only has a reliable effect on JNDs 
for intervals at high variance, where it reduces JNDs by 1.2 percent-
age points in terms of the probability of winning.

When we average over variance, quantile dotplots with means 
lead to the smallest JNDs, and users of HOPs with or without means 
have the largest JNDs, a difference of about 1 percentage point in 
terms of the probability of winning. Quantile dotplots with or 
without means have reliably smaller JNDs than other conditions, 
with the exception of unreliable differences between quantile dotplots 
with no means and densities with or without means.

*Probability densities of model estimates show posterior distribu-
tions of means conditional on the average participant.

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

6



Interaction effects on linear in log odds slopes
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Interaction effects on points of subjective equality (PSEs)
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Interaction effects on just-noticeable differences (JNDs)
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4 RESULTS

4.1 Probability of Superiority Judgments
For each uncertainty visualization, adding means at low variance 
decreases LLO slopes. Recall that a slope of one corresponds to no 
bias, and a slope less than one indicates underestimation. When we 
average over uncertainty visualizations, adding means at low 
variance reduces LLO slopes for the average user, indicating a very 
small 0.8 percentage points increase in probability estimation error.

At high variance, the effect of adding means changes directions 
for different uncertainty visualizations. Adding means decreases 
LLO slopes for HOPs, whereas adding means increases LLO slopes 
for intervals and densities. Because differences in LLO slopes 
represent changes in the exponent of a power law relationship, these 
slope differences of similar magnitude indicate a very small increase 
in probability of superiority estimation error of 0.3 percentage points 
for HOPs and small reductions in error of about 1.5 and 1.0 percent-
age points for intervals and densities, respectively.

Users of all uncertainty visualizations underestimate effect size. 
When we average over variance, users show an average estimation 
error of 8.6, 14.0, 14.8, and 12.4 percentage points in probability of 
superiority units for quantile dotplots, HOPs, intervals, and densities, 
respectively, each without means. In this marginalization, adding 
means only has a reliable impact on LLO slopes for HOPs, but the 
difference is practically negligible.

4.2 Intervention Decisions
4.2.1 Points of Subjective Equality
For each uncertainty visualization, adding means at low variance 
increases PSEs. This results in different effects depending on whether 
the visualization with no means has a PSE below or above utility-op-
timal. Recall that a PSE of zero is utility-optimal, a negative PSE 
indicates intervening too often, and a positive PSE indicates not 
intervening often enough. Users of quantile dotplots with no means 
have negative PSEs which become unbiased when we add means. 
Users of HOPs and intervals with no means have positive PSEs,  
biases which increase when we add means. Users of densities with 
no means have PSEs near zero and become more biased when we 
add means. Only the effect for quantile dotplots is reliable. When we 
average over uncertainty visualizations, at low variance the 
average user may have a PSE 0.6 percentage points above utility-opti-
mal with no means, and adding means increases this mild bias by 
about 1.7 percentage points in terms of the probability of winning.

At high variance, adding means decreases PSEs. Since PSEs for 
all uncertainty visualizations with no means are below optimal, 
adding means increases biases in all conditions, however, the effect 
is only reliable for intervals. When we average over uncertainty 
visualizations, at high variance the average user has a negative PSE 
9.5 percentage points below utility-optimal with no means, and 
adding means increases this bias by about 2.1 percentage points.

4.2.2 Just-Noticeable Differences
At low and high variance, the effects of adding means on JNDs are 
mostly unreliable. Recall that smaller JNDs indicate that a user is 
sensitive to smaller differences in effect size for the purpose of 
decision-making. Adding means only has a reliable effect on JNDs 
for intervals at high variance, where it reduces JNDs by 1.2 percent-
age points in terms of the probability of winning.

When we average over variance, quantile dotplots with means 
lead to the smallest JNDs, and users of HOPs with or without means 
have the largest JNDs, a difference of about 1 percentage point in 
terms of the probability of winning. Quantile dotplots with or 
without means have reliably smaller JNDs than other conditions, 
with the exception of unreliable differences between quantile dotplots 
with no means and densities with or without means.

*Probability densities of model estimates show posterior distribu-
tions of means conditional on the average participant.

© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
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4. Establish viewing order

Know where your audience will look first, second.

Think like a movie director. Are you telling a story?

https://www.youtube.com/watch?v=v4seDVfgwOg

https://www.youtube.com/watch?v=v4seDVfgwOg


4. Establish viewing order
Can be as simple as some numbers...
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4. Establish viewing order

Or more complex,
relying on salience,
other visual cues,
viewer expectations
(maybe) ...
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5. Layer, layer, layer

Design for micro-macro 
reading

Pre-attentive attributes 
help

[http://graphics.wsj.com/elections/2016/field-
guide-red-blue-america/]

http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/
http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/


5. Layer, layer, layer

 

 

[http://graphics.wsj.com/elections/2016/field-
guide-red-blue-america/]

http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/
http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/


5. Layer, layer, layer

See also: poster design

Google scientific poster and see what comes up:  
Now imagine reading them from 20 feet away



(small multiples)



(small multiples = double use of position)

year -> wrapped column (x position)



(small multiples = double use of position)

year -> wrapped column (x position)

 

~longitude	 -> column (x position) 
~latitude 	 -> row (y position)



6. When in 
doubt, grid

And get 
synchronized 
axes as a bonus
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7. Treat visual attributes like adjectives

Don’t use three attributes (size, color, shape, ...) to 
create emphasis where one or two will do.

The very tall building is very extremely tall.



(7b. Obey the pen)
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(7b. Obey the pen)

Even visual texture is pleasing

Also makes it easier to create visual hierarchy and call 
out something important when you need to



Some rough design guidelines*

1.	Match effectiveness with importance
2.	Avoid ambiguity
3.	Locality is king / eyes beat memory
4.	Establish viewing order
5.	Layer, layer, layer
6.	When in doubt, grid
7.	Treat visual attributes like adjectives
     *	 These guidelines are drawn largely from my experience + personal preferences + the literature. 
	 Design is messy, these are not perfect, others will disagree with me, etc. Caveat emptor.



Questions?



Examples / exercises



Grammar of graphics
(data types, channels, marks)

mpg: 		  numeric
wt: 			  numeric
wt 			   -> x position
mpg 		  -> y position
mark: 		 point



Group activity

What are the 
variables / types?

Channels / 
encodings?

Marks?

Is this effective?



Design / sketching

Quick intros: Name, what you plan to work on today

(could be on paper or computer, but I encourage you to 
try out sketching for part of today)



Prediction and memory

[https://nyti.ms/2jX8zue]

https://nyti.ms/2jX8zue


Small multiples

[https://excelcharts.com/animation-small-multiples-growth-walmart-excel-edition/]

https://excelcharts.com/animation-small-multiples-growth-walmart-excel-edition/


Group activity

What are the 
variables / types?

Channels / 
encodings?

Marks?

Is this effective?



[https://fivethirtyeight.

com/features/science-isnt-

broken/]

https://fivethirtyeight.com/features/science-isnt-broken/
https://fivethirtyeight.com/features/science-isnt-broken/
https://fivethirtyeight.com/features/science-isnt-broken/


SPLOM: Scatter plot matrix

											             [https://bl.ocks.org/mbostock/4063663]

https://bl.ocks.org/mbostock/4063663


Hyberbolic trees
[https://youtu.be/fhbQy_NCwWI]

https://youtu.be/fhbQy_NCwWI


Small multiples

[http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/]

http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/


Small multiples

[http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/]

http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/

